### Use of Blood in Medical Patients 2011 Audit Part 1

#### Dr Kate Pendry Consultant Haematologist NHSBT and Central Manchester Hospitals

June 2012

**National Comparative Audit of Blood Transfusion** 

### Why audit the use of red cells in medical patients?



#### Falling Use of Blood in Surgical Patients

| Year of audit | Percentage of<br>red cells<br>transfused to<br>medical<br>patients | Percentage of<br>red cells<br>transfused to<br>surgical<br>patients |
|---------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| 2000          | 52%                                                                | 41%                                                                 |
| 2004          | 62%                                                                | 33%                                                                 |
| 2008          | 64%                                                                | 29%                                                                 |

Series of surveys undertaken in North East England and personal communication JP Wallis

#### Method

- All medical red cell transfusions in one week of choice during September to November 2011, and 1 in 3 haematology/oncology cases (age > 18 years, excluding patients transfused in A&E and ICU)
- Case notes and laboratory information was used to gather data
- Results returned using web-based audit tool
- 181 sites (90% of NHS sites) returned data on 9216 cases

# Appropriate red cell use in medical patients with anaemia Pre transfusion Hb



 $\leq$  7g/dl &  $\leq$  65 years & no comorbidity & no bone marrow failure & no chemotherapy

#### Definition of possible potentially reversible anaemia

**Iron deficiency** = Ferritin  $\leq$ 15 mcg/l (female) or  $\leq$  20 mcg/l (male) **or** Iron studies suggestive of TSAT  $\leq$ 20 or TIBC  $\geq$  85 micromol/l **or** MCV  $\leq$  78fl (in those without haematinic results)

**B12 deficiency** =  $B12 \le 150 \text{ ng/l (pg/ml)}$ 

**Folate deficiency** = Serum folate ≤ 2mcg/l (ng/ml) **or** Red cell folate ≤ 80 mcg/l (ng/ml)

**Autoimmune haemolytic anaemia** = Either diagnosis of 'haemolysis – acquired autoimmune' or Direct Antigloblin Test 'Positive' or grade 1 and above

**Renal Anaemia** = patients with calculated eGFR of  $\leq$  30 (Chronic Kidney Disease stage 4 to 5) with chronic renal failure as only diagnosis ticked and no other diagnosis

#### Transfusion above pre-Tx Hb threshold

Patients with bleeding and Hb >10 g/dl Patients with radiotherapy and Hb >11 g/dl Patients with thalassaemia and Hb >10 g/dl Patients with bone marrow failure or with chemotherapy and >65 years old and Hb >9 g/dl Patients with bone marrow failure or with chemotherapy and ≤65 years old and Hb >8 g/dl Patients >65 years old and Hb >8 g/dl

Patients with comorbidity (at any age) and Hb >8 g/dl

Patients  $\leq$  65 years with no comorbidity, no bone marrow failure and no chemotherapy, and Hb > 7g/dl

Defining bone marrow failure: Haematological diagnosis such as leukaemia, myeloma,

lymphoma , myelodysplasia, aplastic anaemia

#### **Over transfusion**

Transfusion to more than 2g/dl above threshold pre-Tx Hb for possible reversible anaemias

Transfusion to more than 2g/dl above the Hb threshold set for that patient

#### **Demographics**



#### **Clinical Reason for Red Cell Use**



#### **Reason for Transfusion**



#### Pre and post transfusion Hb values



#### **Number of Units Transfused**



#### Who made the decision to transfuse?



#### Defining possible cases of iron deficiency

| Parameter                                                               | Men        | Women      |
|-------------------------------------------------------------------------|------------|------------|
| Total number                                                            | 4791       | 4335       |
| With ferritin result (%)                                                | 1774 (37%) | 1725 (40%) |
| With ferritin $\leq$ 20 mcg/l (male) or $\leq$ 15 mcg/l (female)        | 248        | 341        |
| With transferrin saturation $\leq$ 20 in cases without ferritin results | 58         | 78         |
| With MCV $\leq$ 78 fl in cases without ferritin or iron studies         | 210        | 264        |
| Total possible iron deficiency                                          | 516        | 683        |

#### Defining possible cases of B12 / folate deficiency

| Parameter                                  |       |
|--------------------------------------------|-------|
| Total number                               | 9126  |
| With B12 result                            | 3127  |
|                                            | (34%) |
| With B12 $\leq$ 150 ng/l (pg/ml)           | 111   |
| With serum folate                          |       |
|                                            | (30%) |
| With serum folate $\leq 2mcg/l$ (ng/ml)    |       |
| With red cell folate (and no serum folate) |       |
| Red cell folate $\leq$ 80 mcg/l (ng/ml)    |       |
| Total B12/folate deficiency                |       |

#### Possible autoimmune haemolytic anaemia (AIHA)

| Parameter                              |      |
|----------------------------------------|------|
| Total number                           | 9126 |
| With DAT result                        | 437  |
|                                        | (5%) |
| With DAT Positive or grade 1 and above | 137  |
| Total possible AIHA                    |      |

#### **Possible renal anaemia**

| Parameter                                                    |  |
|--------------------------------------------------------------|--|
| Total number                                                 |  |
| Number of patients after patients with 'acute renal failure' |  |
| and 'bleeding' removed                                       |  |
| With creatinine result available                             |  |
| With eGFR ≤ 30                                               |  |
| With eGFR $\leq$ 30 and chronic renal failure ticked and no  |  |
| other diagnosis ticked                                       |  |
|                                                              |  |

% Possible reversible anaemia cases: Site variation (of sites

with 10 or more cases):



### Patients with anaemia transfused above and below Hb threshold



#### Total number of cases of transfusion above Hb threshold set

| Patients with anaemia    | 2449/7071 (35%) |
|--------------------------|-----------------|
| Patients with blood loss | 106/ 1749 (6%)  |

## Transfusion above Hb threshold set: Site variation (of sites with 10 or more patients with anaemia)



### Over transfusion (% transfused to more than 2g/dl above Hb threshold set for patient category)



### Conclusions

The audit suggests that there is excessive transfusion of red cells to patients under the care of physicians in the UK because of:

- •Transfusion in cases with possible reversible anaemia (20%)
- •Transfusion above the Hb threshold defined by the audit algorithm (29%)
- •Overtransfusion ie transfused to more than 2g/dl above the Hb threshold set for each case by the audit algorithm (33%)

Overall, 48% of cases fell outside the algorithm set by the audit group

### Conclusions

 Reasons are multifactorial and require further investigation in Part 2 of the audit which commenced in April 2012

### Discussion

- Why are patients with potentially reversible anaemia being transfused?
  - Significant symptoms / signs of anaemia
  - Inadequate recognition, investigation and treatment of anaemia
  - Pressure for early discharge

### Discussion

- Why are patients being transfused above the thresholds set in the audit?
  - Symptoms and signs of anaemia at higher
     Hb levels
  - Physicians may not have caught up with surgeons and intensivists with regards to awareness of the lack of benefit of liberal transfusion practice vs. restrictive transfusion practice

### Discussion

- The pre transfusion Hb value alone is an imperfect indicator of appropriate transfusion
- Clinical judgement is required
- It would be great to have a bedside test that could aid the decision making process

### **Next steps**

- Results of the audit will be used to raise awareness of the recommendations for transfusion management of patients under the care of physicians
- Tools will be developed to support the recognition, investigation and management of anaemia plus simple guidelines to support transfusion decision-making

### Acknowledgments

- The clinicians in UK hospitals who are participating in the audit
- The Royal College of Physicians