Understanding Basic Haematology Results Transfusion Study Day 6th November 2012

Tim Watts
Lab Manager
Haematology and Biochemistry
Departments
North Devon District Hospital

Objectives

 After this session, we will know a bit about:

- what the relevant tests are
- what they tell us
- commonest causes of clinically significant abnormal results

Interesting facts

- A person of average height and weight will have approximately 4.6 litres of blood
- Blood accounts for about 8% of body weight.
- Approx 2 million red blood cells are made and destroyed each second

Haemocytoblast (Stem Cell) Megakaryoblast Lymphoblast monoblast Myeloblast Proerythroblast Progranulocyte Megakaryocyte Basophilic Eosinophilic Megakaryocyte Intermediate Basophilic Eosinophilic Neutrophilic Reticulocyte band cell band cell Lymphocyte Monocyte **Platelets** Erythrocytes Basophil Eosinophil Neutrophil Granulocytes Agranulocytes Leucocytes

Haematopoiesis

All blood cells are produced from a common precursor cell, in the bone marrow.

(haemat opeit ic st em cell)

The Full Blood Count

- Main Haemat ology investigation
- I ncrease 2-5% annually chemo et c.
- "Blood f unct ion Test"
- Comprises haemoglobin, white cell count and platelet count

What else?

Example report

urname		Forename	Case No	DOB Ser
ome <i>Address</i> ORRINGTON		Karner No. 0434908	MHS No. 422 093 2372	Report to . REMOTE PRINTER A/E Remote Printer in A/E
		Requesting Clinician: Dr M. ROB		NDDH
linical Details	R SIDED AL	SOO PAIN		***Copy Meport***
HB 12.6 MCV 79.3 MCH 25.4 MCHC 32.0 RDW 14.6 HCT 0.394 RBC 4.97	fL lo pg lo g/dL	(11.5-16.0) (80-100) (27-32) (30-36) (11.5-16.0) (0.35-0.45) (3.8-5.8)		
NEUT 4.7 LYMP 2.7 MONO C.8 EOS 0.1	1 10*9/L 9 10*9/L 5 10*9/L 7 10*9/L 9 10*9/L 1 10*9/L	(4-11) (2.5-7.5) (1.0 3.5) (0-1.0) (0.04-0.4) (0-0.2)		
PLT 250	10*9/L	(150-400)		
aboratory Comm	ents:			

Red blood cell parameters:

- MCV mean (red) cell volume -f L
- MCH mean (red) cell haemoglobin g/dL
- RDW red (cell) distribution width %
- HCT haemat ocrit
- RBC red cell count 10¹²/L

 Normal ranges for red cell indices (applying to north Devonians!):

- Hb Male 13-17; Female 11.5-16
- RBC Male 4.5-6.5; Female 3.8-5.8
- Hct Male 0.4-0.55; Female 0.35-0.45
- MCV 80-100
- RDW 11.5-16

Haemoglobin

- Carries oxygen to all tissues
- Contained within red cells
- Fairly import ant!
- Accurate measurement vital
 - pre-anaest hesia

Haemoglobin

- · Reduced level (anaemia) found in:
 - ir on deficiency
 - vit amin B12/f olat e deficiency
 - malabsorption
 - bleeding/post surgery
 - pregnancy
 - renal failure
 - mechanical or autoimmune cell damage (haemolysis)
 - secondary to other illnesses, e.g. leukaemia, cancer, rheumatoid
 - and their treatments (myelosuppression)

Iron Deficiency Anaemia

- The most common blood disorder
- Characterised by:
- low Hb
- low MCV
- Iow MCH
- Normal / Iow RBC
- Normal / high RDW

I RON DEFI CI ENCY

Treatment I RON - not transfusion

Iron deficiency

· I ron deficient red cells vs. normal

Iron deficiency

Vitamin B12/folic acid deficiency

- More common in the elderly
- Characterised by:
- low Hb
- high MCV
- High RDW
- Iow RBC
- low WBC/ plat elet s

Vitamin B12/folic acid deficiency

· Very few, very large red cells

Vitamin B12/folic acid deficiency - P.A.

- Pernicious anaemia was treated by eating raw liver as this is very rich in vitamin B12 and passive absorption sufficient
- The more wealthy soaked it in Port first!
- Now B12 is given intramuscularly
- No need f or 1.F.

PERNICIOUS ANAEMIA - VI TAMIN B12 DEFICIENCY

LOW HAEMOGLOBIN

RAISED MCV

LOW VITAMIN B12 - FAILURE TO ABSORB

OTHER AUTO- IMMUNE DISORDERS

Treatment Vitamin B12 - not transfusion

Use of RBC indices

- MCV low in iron deficiency, some thalassaemias
- High in B12/f olate deficiency, liver disease, some thyroid disorders
- RDW normal if all RBCs the same size
- I ncreased if there is a significant variation within a patient

Sickle cell anaemia

- Caused by a single amino acid substitution -Hb S
- Irreversibly cryst allises in reduced O₂ levels
- Deforms red cell, hence 'Sickle'
- Cells cannot pass oxygen or move through capilliaries - pain, hypoxia, death
- Confers protection against malaria
- Treat ed with transfusion and O₂
- Check any risk patient before anaest hesia!
- Rapid t est available 20 min

 Sickled red cells - electron microscope

· 'Sickled' red cells - light microscope

Increased haemoglobin

- Causes:
- Cardiorespiratory disorders
- Altitude
- Polycyt haemia rubra vera
- Dehydration
- Newborns
 - due to nature of Hb F

White cells (LEUCOCYTES)

- 5 types circulating in health:
- Neutrophils
- Lymphocyt es
- Monocyt es
- Eosinophils
- Basophils
- Otherwise known as the WBC differential. All 10^9/L

Normal ranges white cells:

- Neutrophils 2.5-7.5
- Lymphocyt es 1.0-3.5
 - Higher in children under 10 years old
- Monocyt es 0-1.0
- Eosinophils 0.04-0.4
- Basophils 0-0.1

- Neutrophils reduced in:
- Bact erial infections e.g. TB
- Viral infections
- Syst emic sepsis
- Acut e leukaemias and ot her MDS
- · Aut oimmune neut ropenia
- Secondary to many drugs

Lymphocyt es increased in:

- Viral illness e.g. glandular f ever (at ypical f or ms) - EBV
- Childhood
- Chronic lymphocytic leukaemia
- Post MI / other trauma

 Glandular f ever at ypical lymphocyt e (Downey cell)

Lymphocyt es reduced in:

Monocyt es increased in:

Myelomonocytic or monoblastic leukaemias (rare)

Eosinophils increased in:

- Ast hma/aller gies
- Par asit ic inf est at ion
 - of ten coexists with iron deficiency
 - strongly suggestive of hookworm

Platelets

- Normal range for plat elets:
 - 150 400 x 10^9/L

Platelets

Plat elet count increased in:

- Essential thrombocythaemia (ET)
- · CGL
- Response to bleeding or other conditions e.g. malignancy, inflammation

Plat elet count decreased in:

- Clot t ed sample/ plat elet clumping
- I diopat hic Thrombocyt openic Purpur a
- Viruses e.g. Parvo, G.F.
- Alcoholics
- Acut e leukaemias
- D.I .C.
- Chemot her apy or ot her Rx

Blood Coagulation

Simple coagulation 'cascade':

 Routine tests used in pre-op assessment of coagulation mechanism:

- (Plat elet count)
- Prothrombin time
 INR
- APTT
- Fibrinogen

- Prothrombin time measures extrinsic coagulation pathway
- Factors made by liver
- Monit or s or al anticoagulation (Warf arin, phenindione, dindevan)
- Also used in liver disease/ ODs
- The INR is derived from this test

- APTT measures intrinsic coagulation pat hway
- Used to monit or I V ant icoagulation (unfractionated heparin - NOT clexane)
- and screen for factor deficiencies
 e.g. haemophilia

Any Questions?

If you've enjoyed this present at ion please go to

http://uk.movember.com/team/577901

And pledge some money to Prost at e Cancer research

Thanks for list ening!