Transfusion in Sickle Cell Disease
What the guidelines [are likely to] say

Dr Bernard Davis
Whittington Hospital, London
Background to BCSH Guideline

Rationale
Current guidance in disparate publications
Concise evidence-based guideline needed
Essentials of transfusion practice in SCD and thalassaemia
Written with practitioners in low prevalence areas in mind
5,000 words long

Writing Group
Dr Kate Ryan Prof John Porter
Dr Bernard Davis Dr Shivan Pancham
Dr Shubha Allard Dr Farrukh Shah
Dr Gavin Cho Dr Amrana Qureshi
Transfusion in SCD

Strategies
- Episodically for acute complications
- Electively on long-term basis to prevent complications

Methods
- Simple or top up transfusion
- Exchange transfusion
Benefits versus Risks

Benefits

- May be life saving in acute situations
- Can reduce mortality and morbidity from post-op complications
- Effective in primary and secondary stroke prevention
- In selected patients, can ameliorate severe disease

Risks

- Greater risk of haemolytic transfusion reactions
 - Peculiar problems related to alloimmunisation
 - Increased rate of out of hours transfusion
 - Patients often present acutely to different hospitals

- Special requirements
- Iron overload
- Increased donor exposure
Aims of blood transfusion in SCD

- To correct anaemia and so improve the oxygen-carrying capacity of blood

- To treat or prevent complications by lowering the percentage of HbS relative to HbA
Indications for emergency transfusion

Established
- ACS with hypoxia
- Acute splenic sequestration
- Aplastic crisis
- Acute hepatic sequestration
- Acute ischaemic stroke
- Acute multi-organ failure

Not indicated/ Uncertain
- Uncomplicated vaso-occlusive crisis (N)
- Mild drop in Hb with no symptoms (N)
- Severe sepsis (U)
- Haemorrhagic stroke (U)
Indications for elective transfusion

Established
- Primary stroke prevention in children
- Secondary stroke prevention
- Pre-operatively
 - HbSS and HbSβ⁰ thalassaemia undergoing low and medium risk surgery

Possible
- Pregnancy
 - Not for uncomplicated pregnancy
 - Consider for variety of other clinical situations
- Repeated painful crises or acute chest syndrome
- Leg ulceration resistant to intensive local measures
- Pulmonary hypertension
- Chronic priapism refractory to medical treatment
Transfusion practice in SCD

• Transfusing the acutely ill patient

• Chronic blood transfusion

• Make blood available in timely manner
• Minimise risk – alloimmunisation, HTRs
• Specify blood is for sickle patient
Transfusion practice in SCD

- Target Hb and HbS concentrations
- Volumes for complete exchange
- Manual exchange protocol
Oxygen transport versus haemoglobin in SCD

Sickle Cell Anemia
$H_b_{\text{max}} \sim 10-11$

2° Polycythemia ($H_b_{\text{max}} \sim 20-22$)

Normal $H_b_{\text{max}} \sim 14-16$

Swerdlow, Hematology 2006
Stroke recurrence in SCD patients on chronic transfusions

Exchange transfusion or top up?

- Hyperviscosity
- Venous access
- Maintaining iron balance
- Alloimmunisation
- Clinical indication
- Clinical status of the patient
Average Liver Iron Concentration

- > 43.0 mg/g dry tissue (NR: 0.17-1.8)
- > 769 mmol/kg dry tissue (NR: 3-33)

Normal range (NR) is taken from Bassoff et al., Hepatology 1996; 6: 24-29.

Transverse Relaxation Rate (R2) Image

Voxels Transverse Relaxation Rate (R2) Distribution

Distribution Mean ± SD: 309.9 ± 25.1

LIC Historic Values

<table>
<thead>
<tr>
<th>Scan Date</th>
<th>LIC mg/g dry tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 Oct 2009</td>
<td>>43</td>
</tr>
<tr>
<td>13 Dec 2010</td>
<td>20.0</td>
</tr>
</tbody>
</table>

LIC Historic Plot
Average Liver Iron Concentration

24.2 mg/g dry tissue (NR: 0.17-1.8)
434 mmol/kg dry tissue (NR: 3-33)

Normal range (NR) is taken from Bassett et. al., Hepatology 1986; 6: 24-29.
LIC Historic Values

<table>
<thead>
<tr>
<th>Scan Date</th>
<th>LIC (mg Fe/g dw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 Sep 2009</td>
<td>12.7</td>
</tr>
<tr>
<td>11 May 2011</td>
<td>2.2</td>
</tr>
<tr>
<td>18 Apr 2012</td>
<td>0.9</td>
</tr>
</tbody>
</table>

LIC Historic Plot

![Graph showing LIC historic values over time]
Top up v Exchange

Top up
- Technically easier
- Fewer resources required
- Reduced donor exposure
- Faster rate of iron accumulation
- Difficult to achieve HbS <30% without increasing blood viscosity

Exchange
- Slower rate of iron accumulation
- Better control of desired HbS
- Reduced risk of hyperviscosity
- Vascular access problems
- Complications associated with long lines
- More resources
- Increased donor exposure
Manual v Automated Exchange

Manual
- Relatively less equipment
- Can be done at bedside
- Partial exchange (30% of blood volume can be achieved quickly)
- Rapid reversal of ACS with partial exchange
- Can maintain HbS < 30% if done every 4 weeks
- Different units have different protocols

Automated
- Relatively quick procedure
- Can achieve HbS < 30% within 2 hours
- Can be programmed to achieve final Hb, HbS and net fluid balance
- Hypocalcaemia and thrombocytopenia can occur
- Use limited in many parts of the country
Laboratory Aspects

Extended phenotype (or genotype) & compatibility testing

- Phenotype/genotype prior to transfusion
- Serological usually; molecular if recently transfused
- C c E e K k Jk^a Jk^b Fy^a Fy^b S s
- U typing if S-s-
- Fully automated systems for ABO grouping
- Antibody screening as standard
- Antibody identification if screen positive
- Antibody card if alloantibodies detected

Choice of blood product

- Match for Rh (D C c E e) and K as a minimum
- Select R0 blood for R0 individuals; use rr in emergency if R0 unavailable
- If antibodies, select blood that is negative for corresponding antigens
- HbS negative
- <14 days old; <7 days old for automated exchange if possible
The serious problem of alloimmunisation

- Reported frequency 18-36% in sickle cell disease
- 30% sickle v 5% non-sickle (Vichinsky, NEJM 1990)
- Likely an underestimate – 37% of antibodies undetectable (Rosse Blood 1990)
- K C E account for 66% of antibodies (Davies BJH, 1987; Vichinsky NEJM 1990)
- Higher rate of multiple alloantibodies (Rosse, Blood 1990)
- Increased rate of autoantibodies (Castellino, BJH 1999)

Factors implicated in alloimmunisation

- Phenotype differences between donors and recipients (Vichinsky, NEJM 1990)
- Greater number of transfusions (Rosse Blood 1990; Olujohungbe BJH 2001)
- Later start to transfusions (Spanos, Vox Sanguinis 1990)
Red cell phenotypes (%) patients and donors

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African</th>
</tr>
</thead>
<tbody>
<tr>
<td>*C</td>
<td>70 (68)†</td>
<td>30 (28)</td>
</tr>
<tr>
<td>*E</td>
<td>30 (35)</td>
<td>19 (24)</td>
</tr>
<tr>
<td>*K</td>
<td>9 (9)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Jk(^a)</td>
<td>77 (77)</td>
<td>92 (91)</td>
</tr>
<tr>
<td>*Jk(^b)</td>
<td>74 (72)</td>
<td>49 (39)</td>
</tr>
<tr>
<td>S</td>
<td>55 (55)</td>
<td>31 (26)</td>
</tr>
<tr>
<td>s</td>
<td>89 (94)</td>
<td>97 (95)</td>
</tr>
<tr>
<td>**U</td>
<td>>99.9</td>
<td>99</td>
</tr>
<tr>
<td>*Fy(^a)</td>
<td>66 (67)</td>
<td>10 (15)</td>
</tr>
<tr>
<td>*Fy(^b)</td>
<td>83 (82)</td>
<td>23 (11)</td>
</tr>
</tbody>
</table>

†Vichinsky NEJM 1990; 322:1617-21
Frequency of alloantibodies in transfused sickle cell patients

<table>
<thead>
<tr>
<th>Specificity</th>
<th>Frequency (%)</th>
<th>Specificity</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>26</td>
<td>Le<sup>a</sup></td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>24</td>
<td>M</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>16</td>
<td>Fy<sup>b</sup></td>
<td>3</td>
</tr>
<tr>
<td>Jk<sup>b</sup></td>
<td>10</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>Fy<sup>a</sup></td>
<td>6</td>
<td>Jk<sup>a</sup></td>
<td>2</td>
</tr>
</tbody>
</table>

Vichinsky NEJM 1990; **322**:1617-21
Disappearing alloantibodies in SCD

Vichinsky Semin Hematol, 2001
Minimising Alloimmunisation

Reduced use of transfusions

- Avoid transfusion unless absolutely necessary
- Incentive spirometry (Bellet, NEJM 1995)
- Hydroxyurea (Charache, NEJM 1995)

Give phenotype-matched blood

- Matching for K, C, E reduced alloimmunisation rate from 3% to 0.5% (Vichinsky, Transfusion 2001)
- 10x reduction if fully phenotyped (17 alloantigens) (Ambruso, Transfusion 1987)
Difficult to transfuse patients

Rare blood types
- Multiple alloantibodies – particular combinations may pose more difficulties
- Common phenotype in Blacks, rare in Caucasian donors (eg. Fya-b-)
- Rare phenotype occurring exclusively in Blacks (S-s-U- and Jsa+b-)

Hyperhaemolysis
- Technically not a rare blood group problem
- Problem of provoking or exacerbating life-threatening haemolysis
- Transfusion management during active haemolysis
 - Avoid transfusion if mild
 - Small volume top ups if severe, rapid haemolysis
Difficult to transfuse patients

Management

• Antibody and hyperhaemolysis cards

• Transfuse only with consultant authorisation

• Active involvement of NBS consultants

• Planning for elective transfusions eg. (pre-op)
 • Prevention of further alloimmunisations
 • Limiting blood loss at operations
 • Location of red cell units

• Planning for emergencies
National Transfusion Database for SCD

- No national database
 - Extended phenotype results
 - Alloimmunised patients
 - Hyperhaemolysis patients

- No centralised system for phenotyping or antibody identification
 - In-house
 - National Blood Service

- A central database – hospital transfusion labs can very easily access patients’ transfusion records
 - Telephone hotline
 - Directly by electronic means
Conclusions

• Transfusion is a major part of SCD management but has risks

• Risks can be minimised by attention to specific principles

• Guideline should help disseminate good practice

• A central database will facilitate transfusion management of sickle cell patients