

Helen Croot, BMS in Haematology and Blood Transfusion

Full Blood Count (FBC)

WBC	8.17	x10^9/L	4.00 - 10.50
Platelets	175	x10^9/L	145 - 400
Neut	4.15	x10"9/L	1.80 - 7.50
Lymph	3.23	x10^9/L	1.30 - 4.00
Mono	0.59	x10^9/L	0.20 - 0.80
Eosin	0.16	x10^9/L	0.02 - 0.40
Baso	0.04	x10^9/L	0.00 - 0.20
ESR	5	mm/h	1 - 12
RDW	13.8		11.5 - 14.5
Nucleated RBC's	0.0	%	

(Normal for an adult female)

Anaemia

- Anaemia is a reduced haemoglobin (Hb) concentration in the blood.
- Normal range for Hb in adults:
 - Females 11.5 16 g/dL
 - Males 12.5 18 g/dL
- Anaemia is classified using the red cell indices.
- Different causes of anaemia can be determined using these classifications and looking at the clinical picture.

Red Cell Indices

- Some of the parameters are measured using automated cell counters and the others are then calculated.
- Mean Cell Volume (MCV) gives the average size of the red cells.
- Haematocrit (HCT) gives the proportion of red cells in a sample. (HCT) $= MCV \times RBC$).
- Red Blood Cells (RBC) gives the number of red cells.
- Mean Cell Haemoglobin (MCH) gives the average amount of Hb in each red cell. (MCH = $Hb \div RBC$).
- Mean Cell Haemoglobin Concentration (MCHC) gives the average concentration of Hb in each red cell. (MCHC = Hb ÷ HCT).

Normal Ranges in Adults

- MCV 80 101 fL
- MCH 25 31 pg
- MCHC 31 36 g/dL

Classification of anaemia

- Using the red cell indices the likely cause of anaemia can be determined but to help with this further tests can be done.
- Usually a blood film will be examined and used along with the clinical details to support a diagnosis.
- Different features in the blood film can help to identify the cause of an anaemia.
- Results from other tests, for example ferritin, B12/folate levels, LDH and Direct Antiglobulin Test, can also help the diagnosis.

Microcytic, hypochromic anaemia

- MCV <80 fL</p>
- MCHC <31 g/dL
- These indices show that the red cells are smaller than normal and have a lower Hb concentration per cell than usual.
- The main causes are iron deficiency and thalassaemia and sometimes anaemia of chronic disease.

Microcytic, hypochromic anaemia

- Iron deficiency
 - Pencil cells
 - Raised platelet count
- Thalassaemia
 - Target cells
 - Occasionally basophilic stippling

Normocytic, normochromic anaemia

- MCV and MCHC are within normal. ranges.
- The red cells are of normal size and have normal Hb concentration or they can be of varying sizes but average is "normal".
- Anaemia is due to a fewer number. of red cells.
- Causes of this can be blood loss, haemolytic anaemia, secondary anaemia and mixed deficiency anaemia.

Normocytic, normochromic anaemia

- Blood loss
 - Clinical details
- Haemolytic anaemia
 - Fragments, spherocytes, polychromasia and NRBCs.
- Secondary anaemia
 - Marrow or renal failure

Macrocytic anaemia

- MCV >101 fL
- MCHC within normal range
- The red cells are larger than usual but have a normal Hb concentration.
- Causes of this can be B12/folate deficiency, liver disease, hypothyroidism, cytotoxic drugs and myeloma.
- This can also be due to a reticulocytosis.

Macrocytic anaemia

- B12/folate deficiency
 - Oval macrocytes
 - Hypersegmented neutrophils
- Liver disease
 - Round macrocytes
 - Absence of hypersegmented neutrophils

Summary

Normocytic, normochromic	Microcytic, hypochromic	Macrocytic, normochromic
Bleeding	Iron deficiency	B12 / folate deficiency
Haemolysis (inc drug- induced)	Thalassaemia	Anaemia due to alcoholism / liver disease
Anaemia of chronic disease		Some drug-induced anaemias
Most structural variants of Hb	Some structural variants of Hb	Diamond-Blackfan

НЬ	11.9	L	g/dĽ	12.5 - 18.0
WBC	8.08		x10^9/L	4.00 - 10.50
Platelets	174		x10^9/L	145 - 400
MCV	94.7		f L	80.0 - 101.0
HCT	0.359	L		0.41 - 0.51
RBC	3.79	L	x10^12/L	4.50 - 5.90
MCH	31.4		pg	25.0 - 35.0
MCHC	33.1		g/dL	31.0 - 36.0
Neut	6.47		x10^9/L	1.80 - 7.50
Lymph	0.68	L	x10^9/L	1.30 - 4.00
Mono	0.73		x10^9/L	0.20 - 0.80
Eosin	0.16		x10^9/L	0.02 - 0.40
Baso	0.04		x10^9/L	0.00 - 0.20
RDW	16.1	${\sf H}$		11.5 - 14.5
Nucleated RBC's	0.2		%	

72 year old male. Haemodialysis unit.

НЬ	8.8	I	g/dL	11.5 - 16.0
WBC	10.30		x10^9/L	4.00 - 10.50
Platelets	405	Η	x10^9/L	145 - 400
MCV	76.1	I	f L	80.0 - 101.0
HCT	0.281	I		0.36 - 0.46
RBC	3.69	L	x10^12/L	4.00 - 5.20
MCH	23.8	L	pg	25.0 - 35.0
MCHC	31.3		g/dL	31.0 - 36.0
Neut	8.16	Η	x10^9/L	1.80 - 7.50
Lymph	1.03	L	x10^9/L	1.30 - 4.00
Mono	1.03	Η	x10^9/L	0.20 - 0.80
Eosin	0.05		x10^9/L	0.02 - 0.40
Baso	0.03		x10^9/L	0.00 - 0.20
RDW	16.6	Η		11.5 - 14.5
Nucleated RBC's	0.0		%	

67 year old female. A&E with SOB and epistaxis.

Hb WBC Platelets MCV HCT RBC MCH MCHC Neut Lymph Mono Eosin Baso RDW Nucleated RBC's	9.1 8.02 354 113.1 0.257 2.27 40.0 35.4 5.20 1.42 1.27 0.04 0.09 15.3 0.0	H L L H	g/dL x10^9/L x10^9/L fL x10^12/L pg g/dL x10^9/L x10^9/L x10^9/L x10^9/L x10^9/L x10^9/L x10^9/L	11.5 - 16.0 4.00 - 10.50 145 - 400 80.0 - 101.0 0.36 - 0.46 4.00 - 5.20 25.0 - 35.0 31.0 - 36.0 1.80 - 7.50 1.30 - 4.00 0.20 - 0.80 0.02 - 0.40 0.00 - 0.20 11.5 - 14.5
--	---	------------------	---	--

53 year old female. GP request – No clinical details.

Thank you for listening

Any questions?