

Serology Overview

Jo Shorthouse

Scientific Training Co-ordinator NHSBT Sheffield

Aims of session

To provide an overview of the following:

- Antigens and antibodies
- ABO blood group system
- Rh blood group system
- Other clinically significant blood group systems

Blood Group Antigens and Blood Group Antibodies

- Antigens are part of the surface of cells
 - Red blood cells, white blood cells and platelets all have antigens
- Antibodies are protein molecules called immunoglobulins (Ig)
 - Usually of the immunoglobulin classes: IgG and IgM
 - Found in the plasma
 - Produced by the immune system following exposure to a foreign antigen
- Reactions to blood usually occurs when the antigen on the cells reacts with an antibody in the plasma

Blood Group Antigens Blood and Transplant

- Most clinically important are the ABO and Rh antigens
- Antigens in transfused blood can stimulate a patient to produce an antibody but only if the patient lacks the antigen themselves.
- The frequency of antibody production is very low but increases the more transfusions that are given

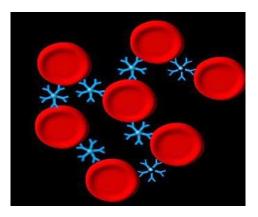
Antibodies are Stimulated by:

- Blood transfusion
 - i.e. blood carrying antigens foreign to the patient
- Pregnancy
 - Foetal antigen entering maternal circulation during pregnancy or at birth stimulating antibody in mother
- Environmental factors
 - (ie naturally acquired as with anti-A and anti-B)

Antibody - Antigen Reactions

IN VIVO (in the body)

- leads to the destruction of the cell either:
 - directly when the cell breaks up in the blood stream (intravascular)
 - indirectly where liver and spleen remove antibody coated cells (extravascular)


IN VITRO (in the lab)

- reactions are normally seen as agglutination
- tests in blood transfusion utilise the specific nature of the antibody-antigen reaction

Agglutination

- Agglutination is the clumping together of red cells into visible agglutinates by antigen-antibody reactions
- Agglutination results from antibody cross-linking with the antigens

Agglutination

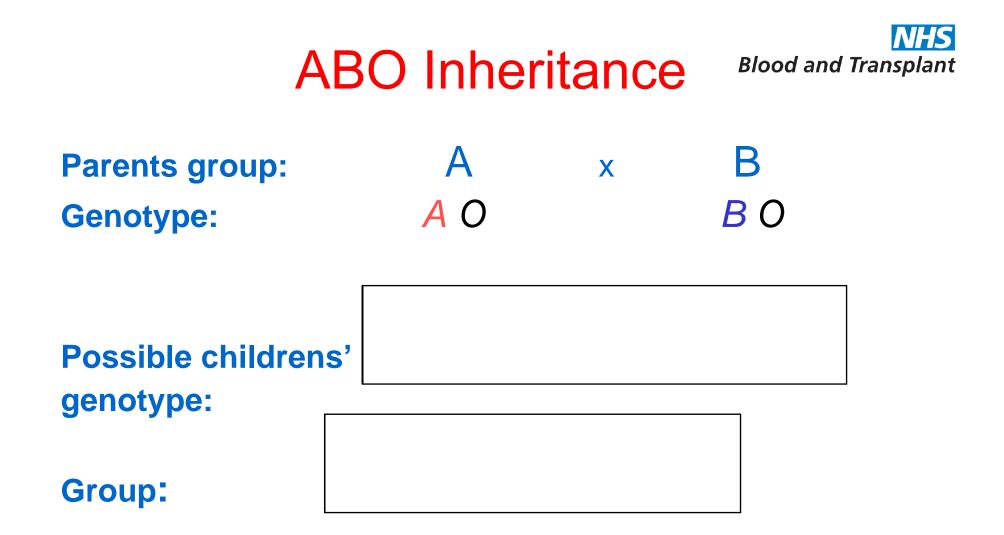
As the antigen-antibody reaction is specific, agglutination can identify:-

The presence of a red cell antigen,

• i.e. 'blood grouping'

The presence of an antibody in the plasma,

• i.e. 'antibody screening/identification'

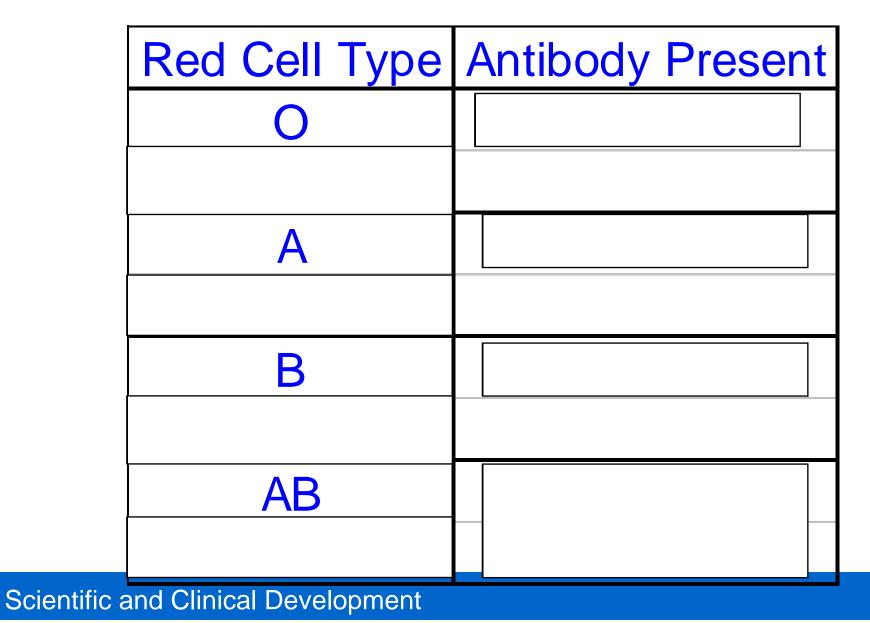


The ABO Blood Group System

The ABO Blood Group System

- Discovered by Karl Landsteiner in 1900
- Inheritance of either A, B or O gene from each parent, giving four possible groups
 (i.o. A, B, AB and O)
 - (i.e. A, B, AB and O)
- A and B genes are codominant

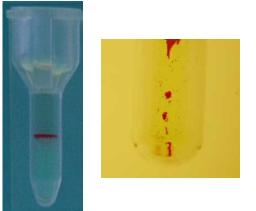
i.e. each group has 25% chance of production

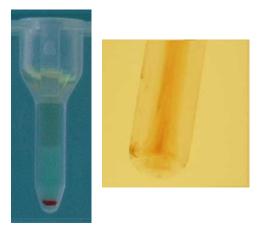

The ABO Blood Group System

Landsteiner's Law

When an individual lacks the A or B antigen the corresponding antibody is produced in their plasma

ABO Antigens/Antibodies




As a result of this 'natural' presence of A and B antibodies (97% of the population), it is the most clinically important blood group system with regard to transfusion

Blood Grouping

- The patients red cells and plasma are both tested
- · Test patients red cells with
 - anti-A, anti-B and anti-D
 - agglutination shows that particular antigen is on the red cells
 - no agglutination shows the antigen is absent
- Test patients plasma with
 - A cells and B cells
 - agglutination shows that particular antibody is in the plasma or serum
 - no agglutination shows the antibody is absent

ABO Grouping

Anti-A	Anti-B	Ctrl	A1 cells	B cells	O cells	Grp
		Neg	4 4 4 4 4 4 4	***		
		Neg		4 4 4 4 4 4 4		
		Neg				
		Neg				

Clinical Significance of the ABO Blood Group System

Significance

" ABO grouping is the most important serological test performed pre-transfusion" (Red Book)

"ABO grouping is the single most important serological test performed on pre-transfusion samples and the sensitivity and security of testing systems MUST NOT be compromised" (BCSH)

Blood and Transplant

Why Clinically Significant?

- A and B antigens very common (55% UK)
- ABO blood group antibodies very common (97% UK)
- High risk of A or B cells being transfused into someone with the antibody in a random situation
- ABO antibodies can activate complement causing
 INTRAVASCULAR HAEMOLYSIS

ABO COMPATIBILITY Blood

	Recipient Blood Group			
Donor Red Cells Group	0	Α	В	AB
Ο	•	•	•	•
Α	20,0	•		•
В	0.5 10		•	•
AB		20,0		••

•Compatible: patient survives

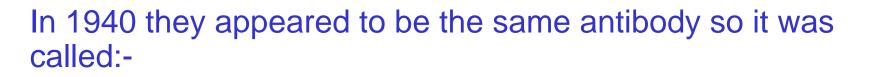
Incompatible: potentially fatal

Rh Blood Group System

History

<u>1939</u>

Levine and Stetson describe an antibody in a woman who had given birth to a stillborn baby, then had a haemolytic transfusion reaction after a transfusion from her husband


<u>1940</u>

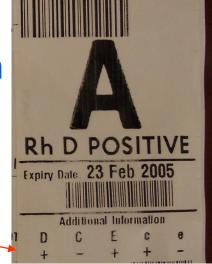
Landsteiner and Weiner immunised guinea pigs and rabbits with blood from the Rhesus monkey

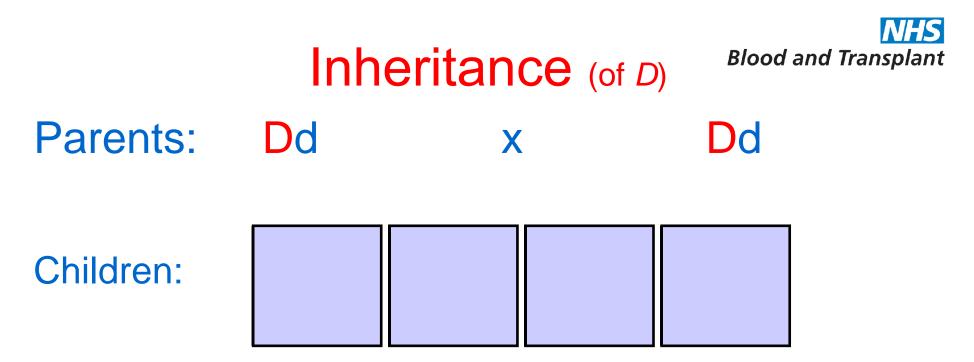
The antibody they obtained, agglutinated the red cells of the Rhesus monkey AND 85% of red cells from a panel of samples from white New York donors

Is this the same antibody?

What's in a name? Blood and Transplant

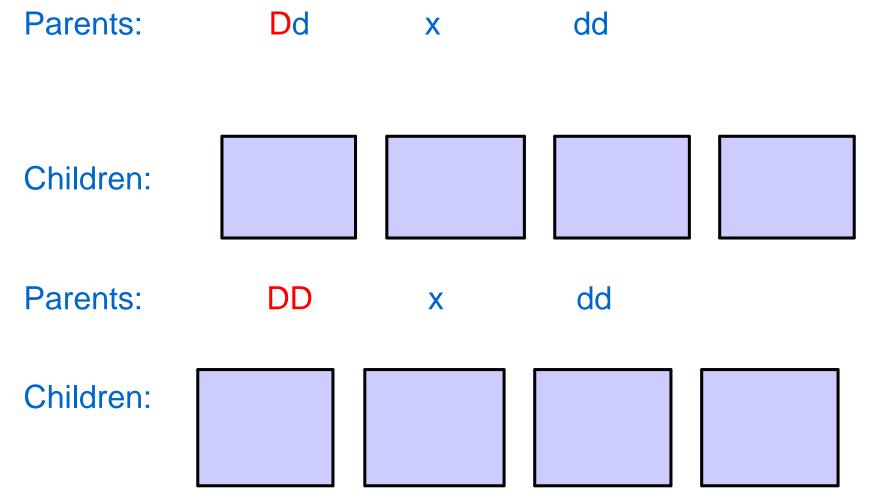
Now known as Rh


BUT now


- Antigens are known to be genetically different
- Human derived blood group -chromosome 1- Rh
- Rabbit/ monkey derived chromosome 19 LW

The Rh Blood Group System 5 Main antigens

- Most important antigen is called D.
- People with D antigen are RhD positive (85% of UK)
- People who do not produce any D antigen are RhD negative (15%)
- The other 4 main Rh antigens are known as C and c & E and e
 - shown on the Blood Pack label



- Rh D positive = inheritance of the D gene / antigen
- Rh D negative = non inheritance of the D gene
- Absence of D gene or antigen is identified by d

REMEMBER d gene or d antigen DOES NOT exist

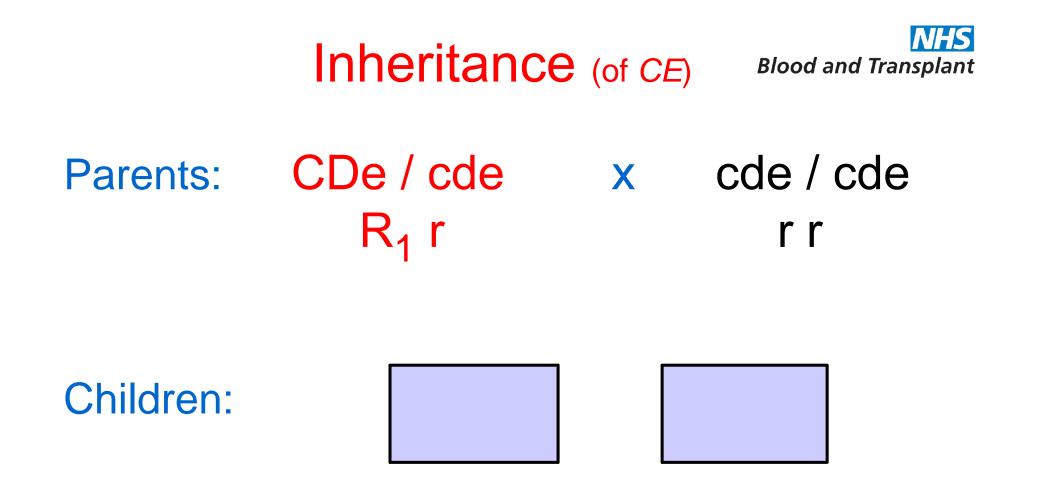
Inheritance (of D) Blood and Transplant

NHS

Inheritance (of CE)

Inheritance of *Rh CE* gene gives one of 4 different protein options:-

Ce cE ce CE


These are inserted into the red cell membrane in the presence or absence of the D antigen.

Inheritance (of CE)

<u>CE gene</u>	<u>D</u>	Shorthand	<u>d</u>	Shorthand
Ce	CDe	R1	Cde	r'
cE	cDE	R2	cdE	r"
се	cDe	Ro	cde	r
CE	CDE	Rz	CdE	rу

One haplotype is inherited from each parent to give the genotype

The Rh Blood Group System Blood and Transplant

- The D antigen is very immunogenic
- D negative patients should be given
 - D negative blood
 - usually also C neg and E neg (shorthand = rr)
- In most circumstances, the other Rh antigens, C, c, E and e are not matched for unless the patient has produced an antibody
- The next most commonly produced Rh antibody is anti-c

Rh typing - D

- Most clinically significant antigen in Rh system
- Most important after ABO
- Must be tested in duplicate with potent IgM monoclonal Anti D
- Or tested each time and compared to historical result
- Patient / Donor classified as D pos or D neg

Rh antibodies are clinically significant – Second only to ABO

Transfusion

D antigen is very immunogenic and anti-D is easily stimulated - PREVENTION!

All Rh antibodies are capable of causing severe transfusion reaction- ANTIBODY DETECTION

Pregnancy

Rh antibodies are usually IgG and can cause haemolytic disease of the newborn.

Anti-D is still most common cause of severe HDN

Other Blood Group Systems

- 30 different known blood group systems
- Of these 9 are 'major' systems
- ABO and Rh most clinically significant
- But... the others are capable (if infrequently) of causing clinically significant antibody stimulation

Other Blood Group Systems

- In each system there are usually a minimum of 2 possible antigens
- The different antigens within a system arise because of variations at the level of the genes.
- These variations give slight differences to the protein produced by the gene
- And these are detected by antibodies

Nomenclature of blood group Systems

- Different capital letters:
 - A and B (ABO) also M and N (MNS)
- Capital letter plus subscript number
 - $-P_1$ and P_2 (P1) also A_1 and A_2 (ABO)
- Capital and lower case
 - K and k (Kell) also S and s (MNS), C and c (Rh)
- Abbreviation of name with superscript a/b

 Fy^a and Fy^b (Duffy) also Jk^a and Jk^b (Kidd)
- Also use of non-subscript numbers (usually reserved for rare types)

– Fy3, Jk3

Clinical Significance of blood group systems

- Antibodies are usually produced in absence of antigen
- Some antibodies are more clinically significant than others i.e. do more harm when encounter antigen in vivo
- ABO, Rh, Kell, Duffy and Kidd are most clinically significant.
- MNS are sometimes clinically significant
- P1, Lutheran and Lewis are less so.

Kell Blood Group System

- Two main antigens: K (Kell) and k (Cellano) which are very "immunogenic"
- After Rh antibodies anti-K is most common
- Relatively easy to find K negative blood
- 91% population are K neg
- 0.2% population are k negative (KK). Anti-k not common but difficult to find k negative blood

RBC reaction with		Phenotype	henotype Genotype		Approx. frequency:	
Anti-K	Anti-k			white b UK	olack US	
+	-	K+k-	KK	0.2%	rare	
+	+	K+k+	Kk	8.8%	2%	
-	+	K-k+	kk	91%	98%	

Duffy Blood Group System

- Two main antigens Fy^a and Fy^b
- Anti-Fy^a is a fairly common antibody. If a patient has anti-Fy^a, transfuse with Fy(a-) blood (33%).

RBC reaction with Anti- Anti- Fy ^a Fy ^b		Phenotype	Genotype	Appro freque white b UK	ncy:
+	-	Fy(a+b-)	Fy ^a Fy ^a	20%	9%
+	+	Fy(a+b+)	Fy ^a Fy ^b	47%	1%
_	+	Fy(a-b+)	Fy ^b Fy ^b	33%	22%
_	_	Fy(a-b-)	FyFy	0%	68%

- The Fy(a-b-) blood type confers resistance to malarial parasite: Plasmodium vivax.
- High % of populations of endemic malarial areas eg West African origin are Fy(a-b-)

NHS Blood and Transplant

The Kidd Blood Group System[®]

- Two antigens: Jk^a and Jk^b
- Both anti-Jk^a and anti-Jk^b are relatively rare. Not difficult to find blood
 - Jk(a-) = 24%, Jk(b-) = 26%

RBC reaction with Anti-Jk ^a Anti-Jk ^b		Phenotype	Genotype	Approx. frequency: white black
+	-	Jk(a+b-)	Jk ^a Jk ^a	26% 51%
+	+	Jk(a+b+)	Jk ^a Jk ^b	50% 41%
-	+	Jk(a-b+)	JK ^b JK ^b	24% 8%

- Both Jk^a and Jk^b antigens show dosage much less antigen is detectable on single dose than double dose cells
- Levels of antibody may be so low as to be undetectable but can still cause transfusion problems if not detected.

MNS Blood Group System

- Originally thought to be 2 separate systems: MN and Ss
- M/N and S/s now known to be proteins produced by 2 very close genes
- Carbohydrate groups on the end of these proteins are responsible for giving all red cells negative charge which stops them sticking together in blood stream

Compare and Contrast

MN	Ss
Anti-M and Anti-N are rarely clinically significant	Anti-S and Anti-s can be clinically significant
Both antibodies do not usually act above room temperature (M)	Both antibodies may be active at blood temperature (37 ⁰ C)
Relatively easy to find compatible blood	Both antibodies not very common
M negative = 22%	S negative = 45%
N negative = 28%	s negative = 11%

Blood provision

- If patient has blood group antibody which is classed as <u>clinically significant</u> then we must provide blood that is negative for the antigen
- If patient has blood group antibody which is NOT classed as clinically significant then we provide blood that has been crossmatched by IAT @ 37°C and found negative

Blood provision

- If patient has blood group antibody which is classed as clinically significant then we must provide blood that is negative for the antigen
- Anti-c :provide
- Anti-K :provide
- Anti-P₁ :provide
- Anti-Fy^a :provide
- Anti-M :provide