Point of Care Coagulation Tests

Sue Mallett
Consultant Anaesthetist Royal Free
Honorary Senior Lecturer UCL

Variability in Transfusion Practice

TRANSFUSION PRACTICE

The ongoing variability in blood transfusion practices in cardiac surgery

Stephanie A. Snyder-Ramos,† Patrick Möhnle,† Yi-Shin Weng, Bernd W. Böttiger, Alexander Kulier, Jack Levin, and Dennis T. Mangano for the Investigators of the Multicenter Study of Perioperative Ischemia, MCSPI Research Group*

Despite widespread availability of clinical practice guidelines the variability in transfusion practice both within and between institutions is profound and has changed little over the last 20 years.

Do transfusion guidelines influence dinical practice?

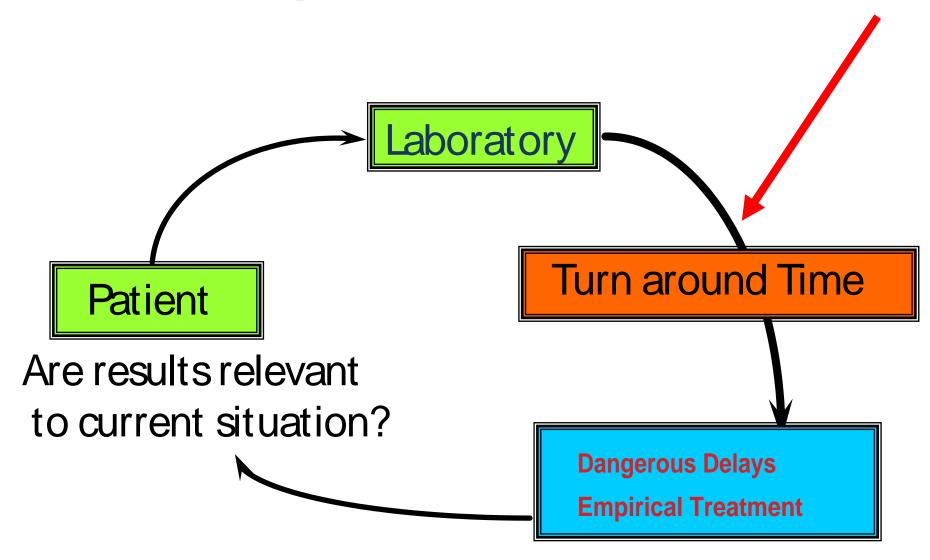
bjh Guideline

Guidelines on the management of massive blood loss

British Committee for Standards in Haematology: Writing Group: D. Stainsby, S. MacLennan, D. Thomas, J. Isaac and P. J. Hamilton 4

¹National Blood Service ²Morriston Hospital, Swansea ³University Hospitals, Birmingham ⁴Royal Victoria Infirmary, Newcastle upon Tyne, UK

Request laboratory investigations


FBC, PT, APTT, Thrombin time, Fibrinogen (Clauss method); blood bank sample, biochemical profile, blood gases and pulse oximetry Ensure correct sample identification

Repeat tests after blood component infusion

Results may be affected by colloid infusion Ensure correct patient identification

May need to give components before results available

Laboratory Based Tests: The Bleeding Patient

POC versus central laboratory coagulation testing during haemorrhagic surgery Toulon.P et al. Thromb Haemostas 2009;101: 394-401

Is Clinical Discretion Okay?

102 elective CABG

POCgroup

Hepcon PFA 100 TEG **Lab Group**

INR
APPT
Platelet Count

Clinical discretion

102 retrospective controls

Avidan M,S et al 2004 BJA 92 (2); 178-176

Clinical Discretion

Table 3 Blood components received. The table shows the number of patients (%) in each group that received transfusions. LAG=laboratory-guided algorithm;

POC=point of care; CD=clinician discretion

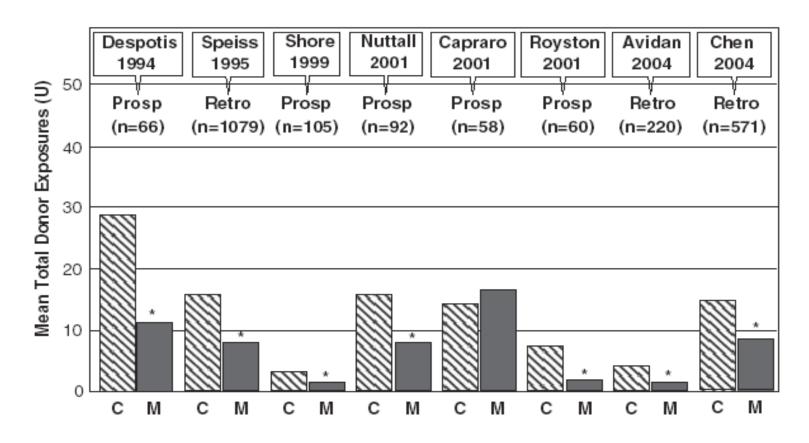
Blood component	LAG group (n=51)	POC group (n=51)	CD group (n=108)	$P(\chi^2 \text{ test})$
Packed red blood cells	35 (69)	34 (68)	92 (85)	0.01
Fresh frozen plasma	0	2 (4)	16 (15)	0.003
Platelets	1 (2)	2 (4)	14 (13)	0.02

Avidan M,S et al 2004 BJA 92 (2); 178-176

Modern Coagulation Management

"Transfusion of coagulation products should be guided by POC tests that assess haemostatic function in a timely and accurate fashion"

Society of Thoracic Surgeons & Cardiovascular Anesthesiologists. Ann Thorac Surg 2007,83:S27-86


Active, Personalized and Balanced Coagulation Management Saves Lives in Patients with Massive Bleeding

Editorial: Anesthesiology 2010;113:1016-8

Michael Ganter & Donat Spahn

Goal directed, targeted, individualised haemostatic therapy

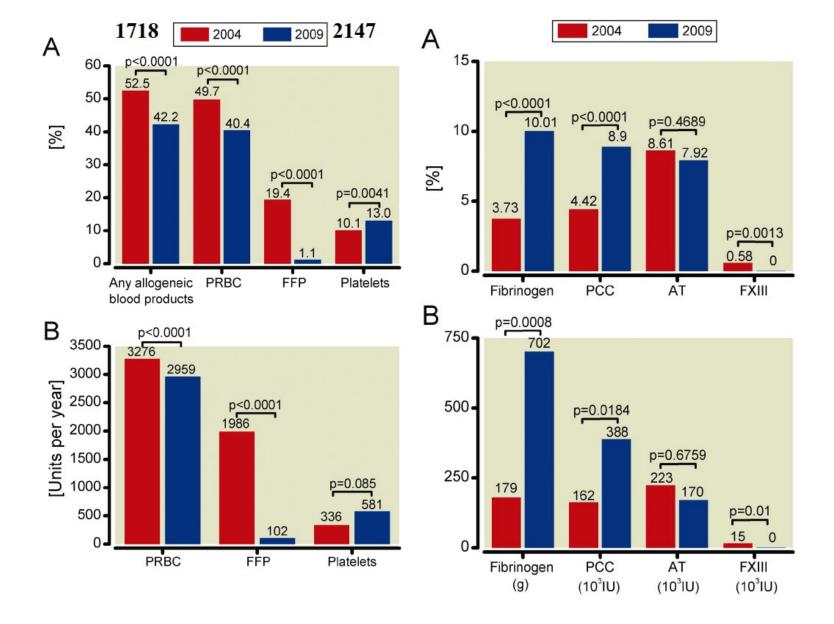
Impact of POCT on Transfusion

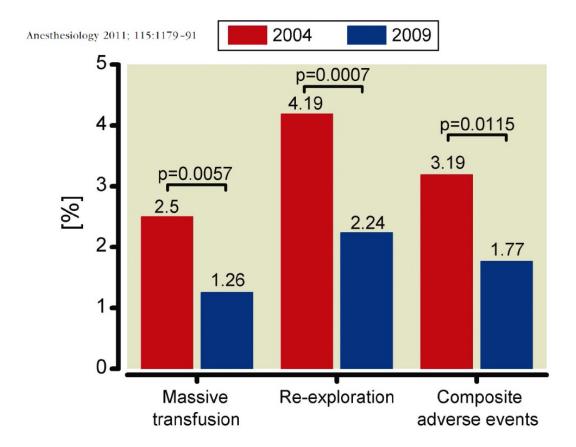
Despotis 2007 European J Anaesthesiology,24: 15 -36

Anesthesiology 2011; 115:1179-91

PERIOPERATIVE MEDICINE

Coagulation Management in Cardiovascular Surgery




First-line Therapy with Coagulation Factor Concentrates Combined with Point-of-Care Coagulation Testing Is Associated with Decreased Allogeneic Blood Transfusion in Cardiovascular Surgery

A Retrospective, Single-center Cohort Study

Klaus Görlinger, Dr. med,* Daniel Dirkmann, Dr. med,† Alexander A. Hanke, Dr. med,† Markus Kamler, PD Dr. med,‡ Eva Kottenberg, PD Dr. med,* Matthias Thielmann, PD Dr. med,‡ Heinz Jakob, Prof. Dr. med,§ Jürgen Peters, Prof. Dr. med||

Methods: In a retrospective cohort study including 3,865 patients, we analyzed the incidence of intraoperative allogeneic blood transfusions (primary endpoints) before and after algorithm implementation.

Point-of-Care Testing

A Prospective, Randomized Clinical Trial of Efficacy in Coagulopathic Cardiac Surgery Patients

Christian Friedrich Weber, Dr. med.,* Klaus Görlinger, Dr. med.,† Dirk Meininger, P.D. Dr. med.,‡ Eva Herrmann, Prof. Dr. rer. nat.,§ Tobias Bingold, Dr. med.,‡ Anton Moritz, Prof. Dr. med.,| Lawrence H. Cohn, M.D., Ph.D.,# Kai Zacharowski, Prof. Dr. med., Ph.D., F.R.C.A.**

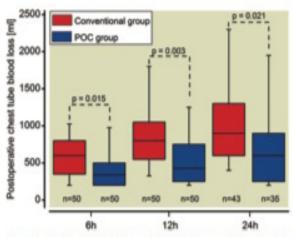


Fig. 3. Postoperative chest tube blood loss. POC = pointof-care.

Table 6. Cumulative Costs of Transfused Allogenic Blood Products, Hemostatic Therapy (Including Coagulation Factor Concentrates), and Costs of Performed POC Analyses

	Conventional Group	POC Group
Allogenic blood products	_	_
Packed erythrocytes	18,648	13,176
[72 €/U]		
FFP [0.162 €/g]	13,530	4,665
PC [231 €/U]	28,755	15,123
Other hemostatic therapy	_	_
Desmopressin [3.3 €/μg]	3,128	3,412
Fibrinogen [233 €/g]	35,882	27,727
PCC [114 €/600 IU]	10,944	6,726
rVIIa [2,784 €/240 kIU]	44,544	5,568
Total blood products and	155,431	76,397
hemostatic therapy		
Expendable materials	_	_
POC Diagnostics		
ROTEM®	_	4,093
Multiplate®		2,427
Mean costs per patient [€]	3,109	1,658
mean costs per patient [e]	0,100	1,000

Weber C F et al. Anesthesiology 2012;117:S31-47

Point-of-Care Testing

A Prospective, Randomized Clinical Trial of Efficacy in Coagulopathic Cardiac Surgery Patients

Christian Friedrich Weber, Dr. med.,* Klaus Görlinger, Dr. med.,† Dirk Meininger, P.D. Dr. med.,‡ Eva Herrmann, Prof. Dr. rer. nat.,§ Tobias Bingold, Dr. med.,‡ Anton Moritz, Prof. Dr. med.,| Lawrence H. Cohn, M.D., Ph.D.,# Kai Zacharowski, Prof. Dr. med., Ph.D., F.R.C.A.**

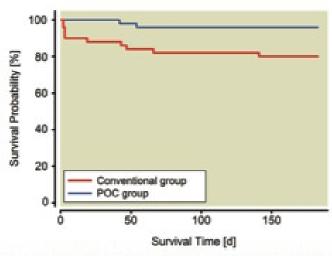
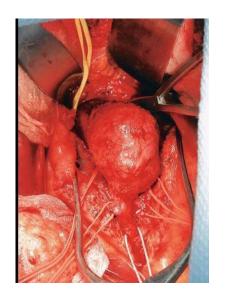


Fig. 4. Kaplan–Meier curve demonstrating survival by type of performed coagulation management during the 6-month follow-up period. POC = point-of-care.

Detecting, managing and monitoring haemostasis: viscoelastometric point-of-care testing (ROTEM, TEG and Sonoclot systems)

Issued: August 2014

NICE diagnostics guidance 13 www.nice.org.uk/dg13



Massive Transfusion

Different circumstances have different problems

Trauma

Vascular Surgery

Liver Transplantation

Spinal Surgery

Obstetrics

Cardiac surgery

The Bleeding Patient

Adequate Thrombin Generation

Coagulation factors > 30% Platelets > 50,000

Adequate clot formation

Adequate Fibrinogen

Critical level: >1.0 g/dl

Recent work suggest > 1.5 or 2g

Obstetric haemorrhage > 2g

Inhibit excessive fibrinolysis

Stop excessive clot dissolution

Tranexamic Acid

REVIEW

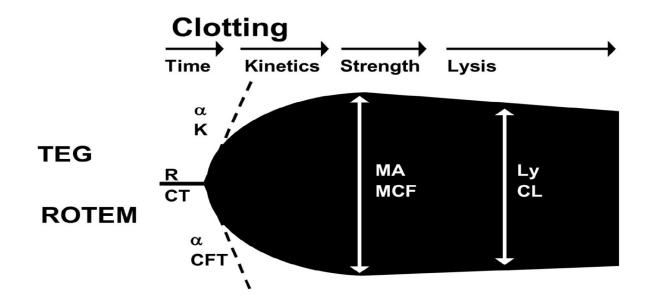
Fibrinogen as a therapeutic target for bleeding: a review of critical levels and replacement therapy

Jerrold H. Levy^{1,*}, lan Welsby¹ and Lawrence T. Goodnough²

Article first published online: 9 OCT 2013

DOI: 10.1111/trf.12431

© 2013 American Association of Blood Banks

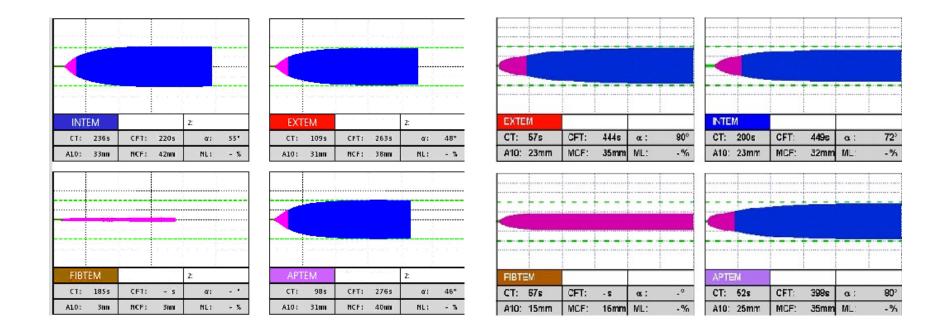

Issue

Transfusion Volume 54, Issue 5, pages 1389–1405, May 2014

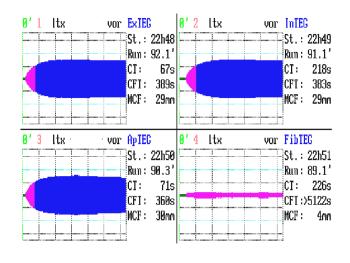
Viscoelastic POC tests of Coagulation

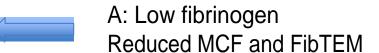
Schematic of TEG/ ROTEM parameters

What information do we need?

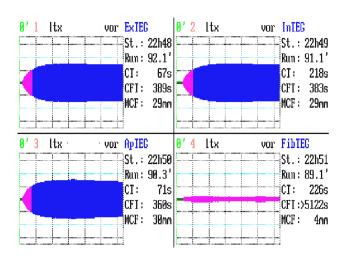

1: Is clot forming & how rapidly? Clotting factor levels & anticoagulants: R/CT

2: How strong is the clot? Platelets & Fibrinogen: MA/MCF

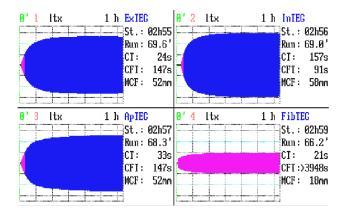

3: Is it stable? Fibrinolysis: CLI


Reduced MA/MCF Low fibrinogen

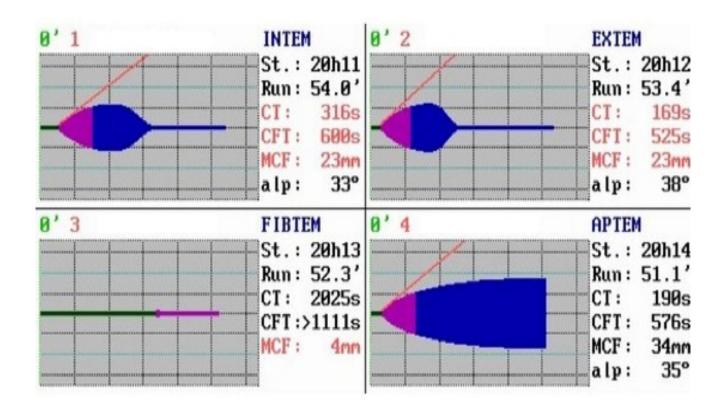
Reduced MA/MCF Thrombocytopenia

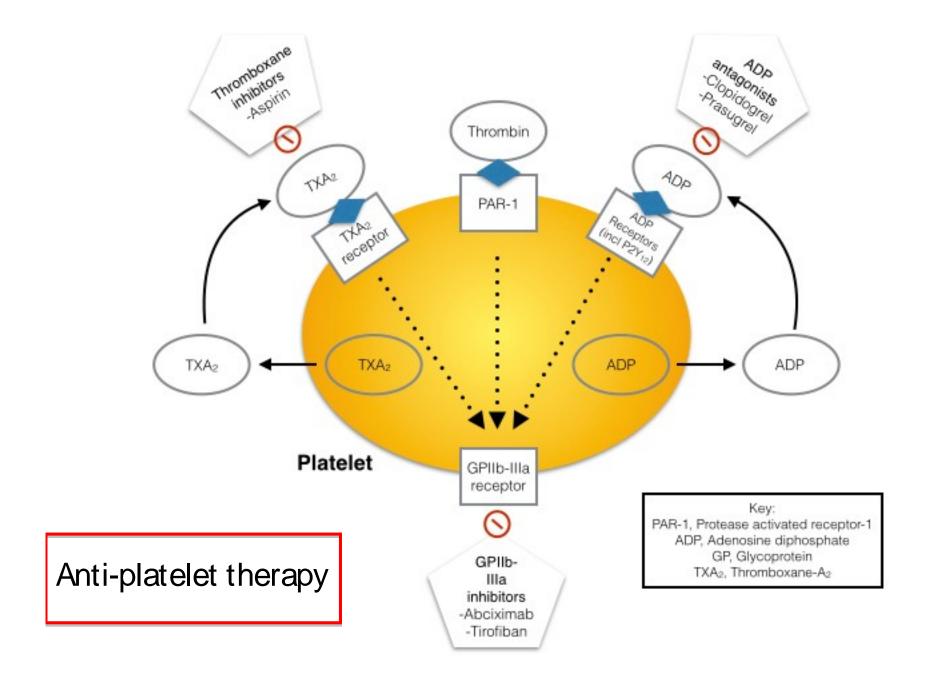


Monitoring the efficacy of treatment intervention

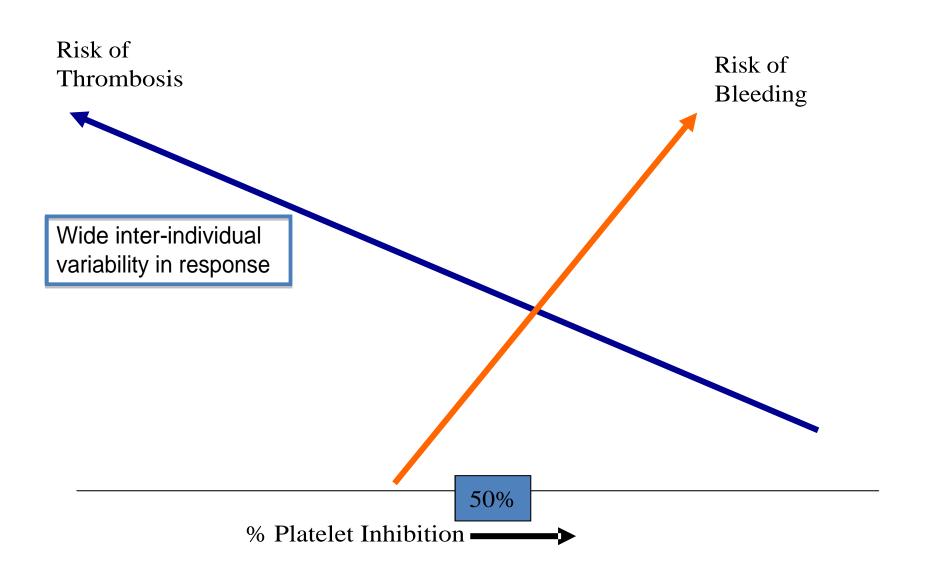


Monitoring the efficacy of treatment intervention

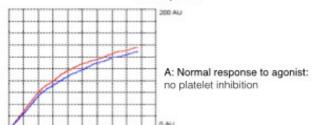

A: Low fibrinogen
Reduced MCF and FibTEM

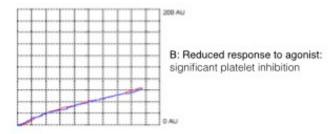


B: After treatment with fibrinogen concentrate Normal MCF & Normal FibTEM

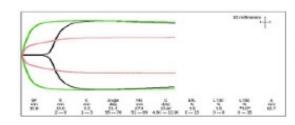

Severe Trauma

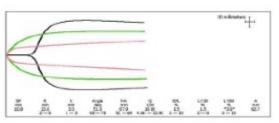
Hypofibrinolysis & Hypofibrinoginaemia



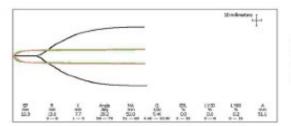


Anti-platelet therapy


Multiple electrode platelet aggregometry: Multiplate®

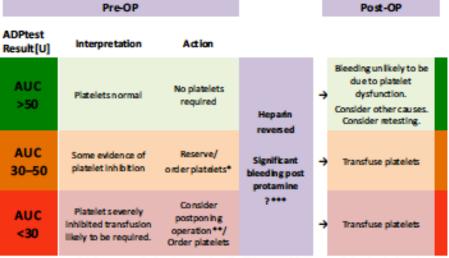


Key AU, Aggregation Units


Thromboelastography® Platelet Mapping

A: No platelet inhibition
Maximum Amplitude (MA) on
Adenosine Diphosphate (ADP)
stimulation (green trace) the same as
MA on Kaolin (black trace)

B: Partial platelet inhibition (40%) ADP MA (green) less than kaolin MA (black)



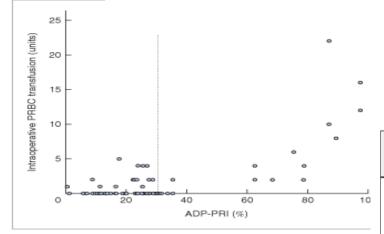
C: Complete platelet inhibition ADP MA (green) the same as Fibrin (pink trace) and no demonstrable platelet activation with ADP

Consensus recommendations for using the Multiplate® for platelet function monitoring before cardiac surgery

R. KONG*, A. TRIMMINGS*, N. HUTCHINSON*, R. GILL*, S. AGARWAL*, S. DAVIDSON*, M. ARCARI*

Perform ADPtest and TRAPtest in Hirudin sample tubes

IF TRAPtest result is low, retest before interpreting, if still low consider cause of platelet dysfunction.


Issue

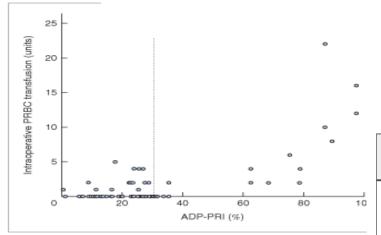
R. Kasivisvanathan^{1,*}, N. Abbassi-Ghadi², S. Kumar², H. Mackenzie², K. Thompson¹, K. James¹ and S. V. Mallett¹

Article first published online: 4 AUG 2014 DOI: 10.1002/bjs.9592

© 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd

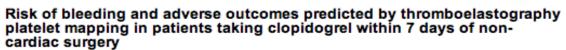
	ADP-PRI < 30% (n = 112)	Control (n = 112)	P†	ADP-PRI ≥ 30% (<i>n</i> = 19)	Control (<i>n</i> = 19)	P [†]
Intraoperative transfusion *						
PRBCs (units)	0·3(0·9); 0	0.3(1.0); 0	0.851‡	5·3(6·0); 4 (2-8)	0·6(1·1); 0 (0-1)	< 0·001 [‡]
FFP (units)	0·1(0·3); 0	0·1(0·3); 0	0.537‡	2·6(2·8); 2 (0-3)	0; 0	< 0·001 [‡]
Platelets (pools)	0·1(0·3); 0	0·1(0·4); 0	0.702‡	1·4(2·1); 0 (0_2)	0·1(0·5); n	0.046‡

Issue


R. Kasivisvanathan^{1,*}, N. Abbassi-Ghadi², S. Kumar², H. Mackenzie², K. Thompson¹, K. James¹ and S. V. Mallett¹

Article first published online: 4 AUG 2014

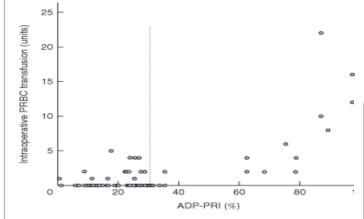
DOI: 10.1002/bjs.9592


© 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd

	ADP-PRI < 30% (n = 112)	Control (<i>n</i> = 112)	P [†]	ADP-PRI ≥ 30% (<i>n</i> = 19)	Control (<i>n</i> = 19)	P [†]
Intraoperative transfusion *						
PRBCs (units)	0·3(0·9); 0	0·3(1·0); 0	0·851 [‡]	5·3(6·0); 4 (2-8)	0·6(1·1); 0 (0-1)	< 0·001 [‡]
FFP (units)	0·1(0·3); 0	0·1(0·3); 0	0·537 [‡]	2·6(2·8); 2 (0-3)	0; 0	< 0·001 [‡]
Platelets (pools)	0·1(0·3); 0	0·1(0·4); 0	0.702‡	1·4(2·1); 0 (n_2)	0·1(0·5); n	0.046‡

Issue

R. Kasivisvanathan^{1,*}, N. Abbassi-Ghadi², S. Kumar², H. Mackenzie², K. Thompson¹,


K. James¹ and S. V. Mallett¹

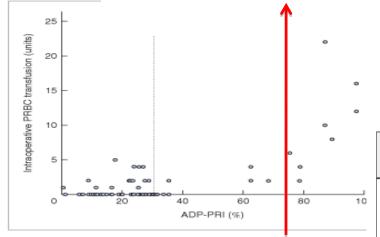
Article first published online: 4 AUG 2014

DOI: 10.1002/bjs.9592

© 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd

	ADP-PRI < 30% (n = 112)	Control (n = 112)	P [†]	ADP-PRI≥ 30% (n = 19)	Control (<i>n</i> = 19)	P [†]
Intraoperative transfusion *						
PRBCs (units)	0·3(0·9); 0	0·3(1·0); 0	0.851‡	5·3(6·0); 4 (2-8)	0·6(1·1); 0 (0-1)	< 0·001 [‡]
FFP (units)	0·1(0·3); 0	0·1(0·3); 0	0.537‡	2·6(2·8); 2 (0–3)	0; 0	< 0·001 [‡]
Platelets (pools)	0·1(0·3); 0	0·1(0·4); 0	0.702‡	1·4(2·1); 0 (0_2)	0·1(0·5);	0.046‡

Issue


R. Kasivisvanathan^{1,*}, N. Abbassi-Ghadi², S. Kumar², H. Mackenzie², K. Thompson¹, K. James¹ and S. V. Mallett¹

Article first published online: 4 AUG 2014

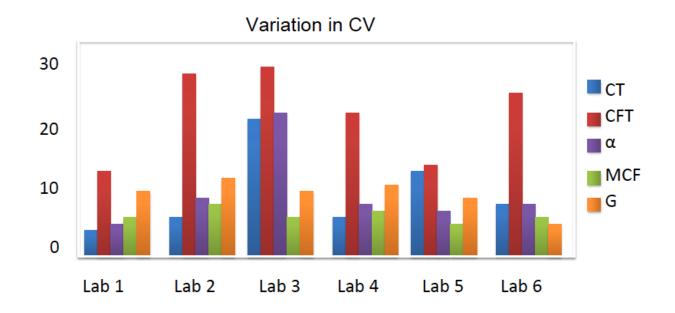
DOI: 10.1002/bjs.9592

© 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd

	ADP-PRI < 30% (n = 112)	Control (<i>n</i> = 112)	P [†]	ADP-PRI ≥ 30% (<i>n</i> = 19)	Control (<i>n</i> = 19)	P [†]
Intraoperative transfusion *						
PRBCs (units)	0·3(0·9); 0	0.3(1.0); 0	0.851‡	5·3(6·0); 4 (2-8)	0·6(1·1); 0 (0-1)	< 0·001 [‡]
FFP (units)	0·1(0·3); 0	0·1(0·3); 0	0.537‡	2·6(2·8); 2 (0-3)	0; 0	< 0·001 [‡]
Platelets (pools)	0·1(0·3); 0	0·1(0·4); 0	0.702‡	1·4(2·1); 0 (0_2)	0·1(0·5); n	0.046‡

Operator Variability

Skilled Laboratory Scientist


Operator Variability

Skilled Laboratory Scientist

Skilled Anaesthetist

Point of Care Equipment must have Quality Assurance & SOP Trained & competent operatives

International TEG-ROTEM working group

Journal of Cardiothoracic and Vascular Anesthesia

Volume 28, Issue 6, December 2014, Pages 1550-1557

Original Articles

Interoperator and Intraoperator Variability of Whole Blood Coagulation Assays: A Comparison of Thromboelastography and Rotational Thromboelastometry

Lynne Anderson, FRCA^{*}. ≜ · ☑, Isma Quasim, FFARCSI^{*}, Mark Steven, FRCA^{*}, Stephen F. Moise, FRCA^{*}, Ben Shelley, FRCA^{*}. †, Stefan Schraag, MD, PhD^{*}, Andrew Sinclair, FRCA^{*}

Unrivalled performance with TEG® 6S

Builds on current strengths

- Proven value in coagulation
- Strong KOL network
- Emerging literature on TEG[®] value

True Point-of-Care system

- Simple cassette loading
- Vibration resistant
- Easier lab management
- Internet connected

Global product planning

- Two recent FDA filings
- Planned registration in EU, Japan and Asia

JPAC - Joint United Kingdom (UK) Blood Transfusion and Tissue Transplantation Services Professional Advisory Committee

Home / UK Transfusion Committees / UK Transfusion Committees / North West RTC / Policies / Thromboelastography/Thromboelastometry (TE)

昌

Welcome

Audits

Calendar

Contacts

Education

Policies

Massive haemorrhage toolkit

TE Toolkit

RTC Business

Thromboelastography/Thromboelastometry (TE)

Getting Started

Business Case Guidance (Word doc 316KB)

This generic business case framework can be used to form the basis of your organisation's funding bid to introduce TE. The text may be adapted to suit local requirements.

TE contacts (pdf 32KB)

Email addresses of manufacturers and those involved in TE in the North West region and nationally.

Literature review (pdf 28KB)

The manufacturing companies for TEG® and ROTEM® have provided technical specifications, key features and details of the services they provide. The manufacturers are responsible for this information and it is correct as of the date of publication.

TEG® 5000 Hemostasis Analyser System supported by Haemonetics (pdf 400KB)

Further information: http://www.haemonetics.com/ email: info@haemonetics.com

ROTEM® system description supported by TEM UK Ltd (pdf 72KB)

ROTEM® service packages (Word 20KB)

Further information: http://www.rotem.de/ email: jim.leith@tem-internatioal.co.uk

Framework for the provision of Thromboelastography/Thromboelastometry (Word 316KB)

This policy has been written to support the implementation of TE in a Trust and may be adapted to meet local needs.

Education and Training

Factsheet 1: Sample collection (pdf 132KB)

Factsheet 2: Operating procedure (pdf 248KB)

Factsheet 3: Interpretation (pdf 344KB)

Algorithms based on simple POCT improve transfusion decision making

- ACT, INR, Platelet count
- Patients receive fewer transfusions of FFP & platelets
- Use of algorithms result in greater use of <u>specific types</u> of blood components
- More directed therapy may correct haemostatic defect more effectively with decreased bleeding on ITU

Nuttall G et al. Anesthesiology 2002,94:773-82 Avidan M,S et al BJA 2004 92 (2); 178-176 Samama & Ozier. Vox Sang 2003;84, 251-255 Despotis GJ et al. Anesthesiology 1994;84:338-351

Point of Care Coagulation Monitoring

FBC Platelet count Test Results in < 5 minutes

INR PT ACT

- 1: Reduces unnecessary & inappropriate transfusions
- 2: Improves compliance with transfusion guidelines

Conclusion: POC Coagulation testing

Requires education programmes and competency training of all staff using the equipment Quality assurance and maintenance Forms part of permanent patient record

Integral part of PBM

Facilitates rapid assessment & optimisation of coagulopathy
Focused delivery of appropriate products
Reduces transfusion requirements
Improves patient outcomes
Reduces hospital costs