Surgical strategies to stop bleeding

Kevin Varty MD FRCS Consultant Vascular Surgeon Addenbrookes Hospital

Aims Talk Outline

What procedures and situations are associated with large blood loss ?

Packing – when to use it, does it work?

Vascular Occlusion / Ligation

REBOA in trauma Internal iliac arteries PPH

When do we get large blood loss ?

- Trauma
- Emergency vs Elective surgery
- Vascular Surgery (emergency)
- Tumour Surgery
- Post Partum

Open RAAA surgery on 161 patients,

median blood loss 4200 mls (IQR 2400 – 8000) Dick F, et al BJS 2012; 99 : 940-47

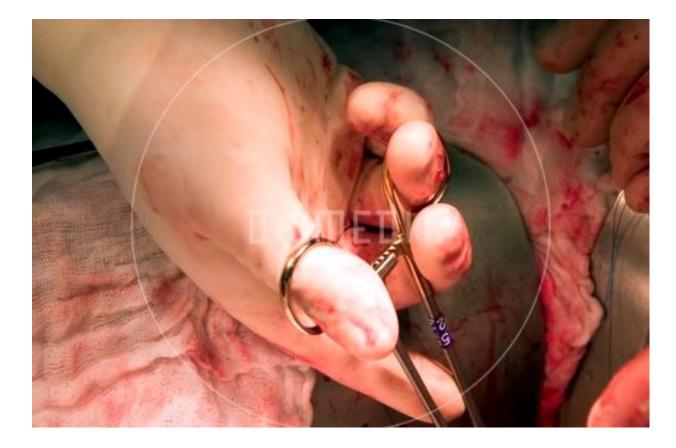
Meta – analysis of EVAR for RAAA

Median blood loss 523 mls

Rayt HS et al EJVES 2008; 326(5): 536 - 44

Type of surgery	Range of blood loss (cc)	Range of PRBCs units	
Spine tumors [38–43]	400-12,100	2-10	
Sacral tumors [44–46]	3,000-37,000	0-43	
Hemipelvectomy [47-50]	400-12,100	0-134	
Total pelvic exenterations [47–50]	900–9,500	0-18	
Nephrectomy with IVC embolectomy [37, 51-55]	200-16,000	0-91	
Liver and multivisceral resection [12, 56-62]	200->5,000	0-44	
Extrapleural pneumonectomies [63-65]	900–65,00	0-18	

TABLE 1: Type of surgery, blood loss, and blood transfusion.


Table 1 illustrates ranges of blood losses and PRBCs of transfused units reported in the literature.

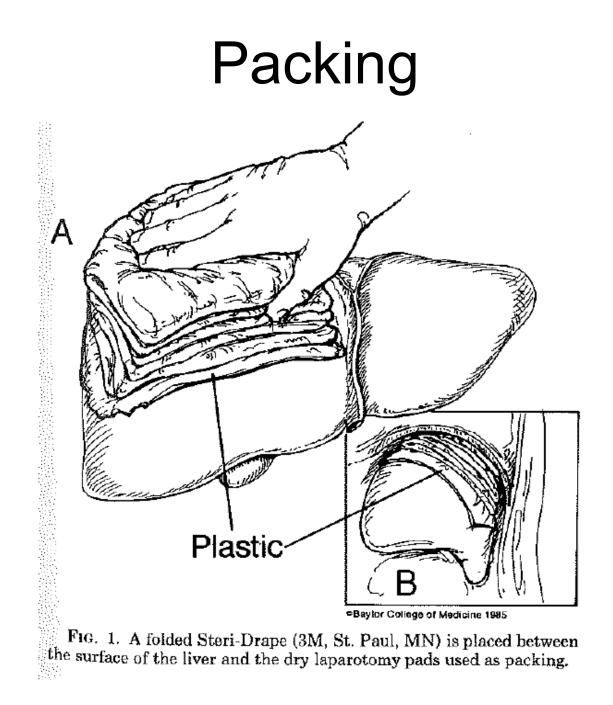

Type of surgery	Anesthetic interventions	Surgical interventions
	Antifibrinolytics	Surgical hemostasis
Spine tumors	Controlled hypotension*	Preoperative tumor embolization
	Antifibrinolytics	Surgical hemostasis
Sacral tumors		Preoperative tumor embolization
		Aortic balloon occlusion-Iliac artery ligation
Hemipelvectomy	Antifibrinolytics	Surgical hemostasis
Hempewectomy		Vascular control
Nephrectomy with IVC embolectomy	Antifibrinolytics	Surgical hemostasis
Repirectomy with IVC embolectomy		Correction of hypothermia after CPB
Liver and multivisceral resection	$CVP < 5 \text{ cm } H_2O^{**}$	Surgical hemostasis
	Antifibrinolytics	Preoperative tumor embolization
		Vascular control
Extrapleural pneumonectomies	Antifibrinolytics	Surgical hemostasis

TABLE 2: Perioperative interventions targeted to reduce blood loss during major oncological surgery.

*Controlled hypotension has fallen in disfavor of many anesthesiologists due to its possible association with postoperative visual loss. **This practice has also been questioned due to the poor correlation between central venous pressure and central volume status.

Main Surgical method to stop significant arterial and venous bleeding is ligation and suture

Packing Feliciano D et al J.Trauma 1986; 26: 738-42 Houston

1978 – 851348 hepatic injuries66 (5.6%) packing attempted

17 died in theatre.

49 successfully packed

SURVIVAL 28/49 = 57%

Deaths mainly due to shock and persistant coagulopathy

Packing Feliciano D et al J.Trauma 1986; 26: 738-42 Houston

Mechanism Number Penetrating GSW 36	(%)
GSW 36	
SW 10 }	(74.2%)

TABLE II
Indication for packing in patients surviving first operation

Indication	Number	(%)
Coagulopathy	42	(85.8%)
Capsular problem	6	(12.2%)
Planned reoperation	1	(2.0%)

Liver Packing for Uncontrolled Hemorrhage: A Reappraisal

Ivatury R et al J.Trauma 1986; 26 : 744-52 New York

Found little improvement in overall mortality for liver injuries when comparing two consecutive periods, one where packing was in use, one where it was not.

Highlighted a high incidence of intra-abdominal abscesses after packing

Packing Sharp KW et al Ann Surg 1992; 215 : 467-73

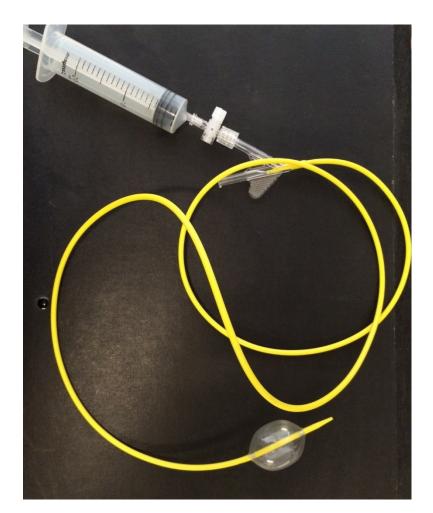
Planned intra-abdominal packing for surgically uncontrollable hemorrhage from liver and retroperitoneal injuries exacerbated by hypothermia, acidosis, and coagulopathy regained popularity over the past decade. The authors reviewed 39 patients injured between August 1985 and September 1990; 31 packed for liver injuries, eight for nonliver injuries. The overall mortality rate was 44% (17/39); 9 (23%) exsanguinated, 3 (8%) died of head injuries, 3 (8%) of multisystem organ failure, 2 (5%) of late complications. The mean age was 33.9 ± 16.2 (range, 16 to 79); there

"Packing may be done to prevent development of acidosis, hypothermia, and coagulopathy or may be done early in the treatment of cold acidotic patients rather than massive transfusion in the face of surgically uncorrectable bleeding"

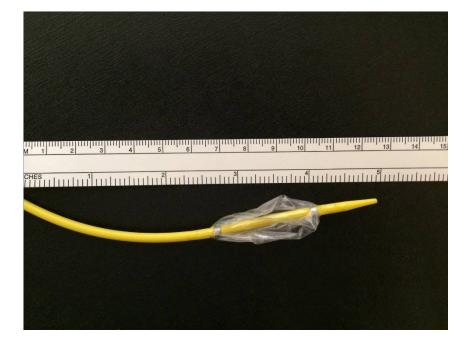
Packing Sharp KW et al Ann Surg 1992; 215 : 467-73

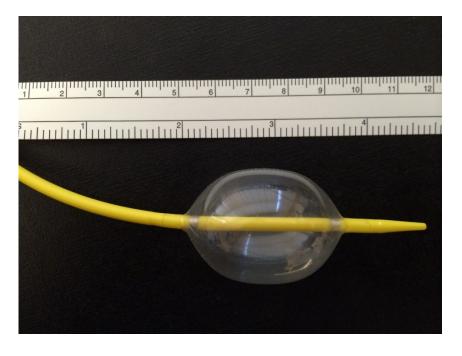
"The timing of the decision to pack is controversial: should packing be used before coagulopathy develops or only after the onset"

Packing Summary

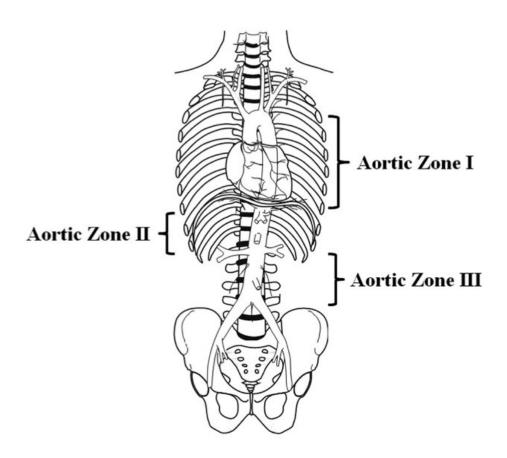

A useful manoeuvre used usually in difficult situations, often late on, when coagulopathy, hypothermia and acidosis are in place.

Success varies - 44-57% mortalities reflect how ill these trauma patients are.


Improvements in warming, acidosis prevention and avoiding transfusion coagulopathy have improved outcomes and reduced the need for packing in my experience.


Vascular Occlusion/Ligation REBOA

Vascular Occlusion/Ligation REBOA



Balloon Occlusion (BO) vs. Thoracic Clamp vs. No clamp in animal model

Conclusion. Resuscitative aortic BO increases central perfusion pressures with less physiologic disturbance than thoracotomy with aortic clamping in a model of hemorrhagic shock. Endovascular BO of the aorta should be explored further as an option in the management of noncompressible torso hemorrhage. (Surgery 2011;150:400-9.)

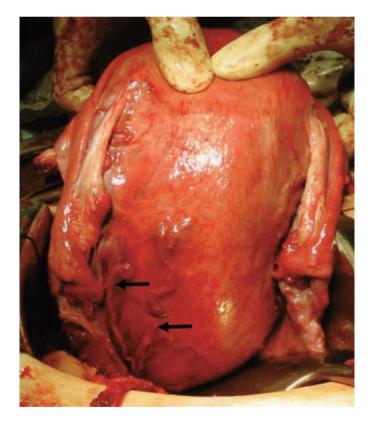
Brenner M et al J Trauma 2013; 75 : 506-11

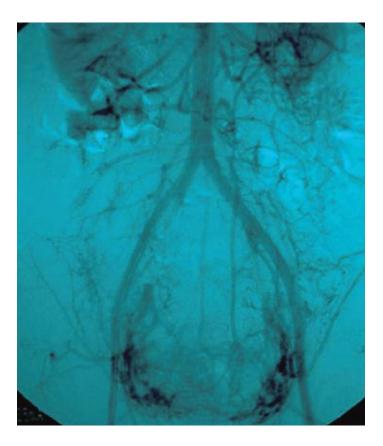
Six Futerio						
Patient	1	2	3	4	5	6
Age, y	62	24	59	25	40	27
Sex	Male	Male	Male	Male	Male	Female
Mechanism of injury	MVC	GSW	GSW	MVC	MCC	ATV collision
Injury Severity Score (ISS)	28	50	9	25	48	43
SBP before REBOA, mm Hg	70	70	0	60	70	85
Cardiac arrest before REBOA	No	No	Yes	No	No	No
SBP after REBOA, mm Hg	135	122	100	110	130	125
Admission base deficit	12	4	NA	16	14	19
Time to occlusion, min	5	4	4	6	6	6
Time of occlusion, min	12	16	70	60	65	36
Surgery after REBOA	No	Yes	Yes	Yes	Yes	Yes
Pelvic embolization after REBOA	Yes	Yes	No	No	Yes	Yes
Complication of REBOA	No	No	No	No	No	No
Outcome	Alive	Alive	Alive	Alive	Brain death	Death (care withdrawn)

TABLE 1. Demographics and Summary of REBOA Use inSix Patients

REBOA issues

- Further experience needed
- Use defined
- Training
- Need plan for definitive haemorrhage control
- What level of imaging is needed ?
- Avoidance of Vascular injury

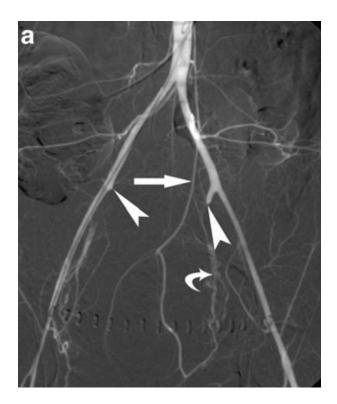

Vascular Ligation IIA for PPH


- Major PPH (>1 L)
- Incidence 0.5%
- Uterine atony.
- Medical therapies
- Suture techniques (compress uterus, target uterine arteries / ovarian)
- Hysterectomy

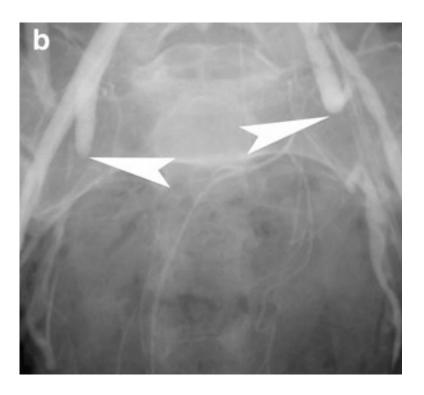
PPH when severe, what is the role of IIA ligation or embolization ?

- Success rates 70 80% in the literature
- What if it does not succeed ?
- Why does it not succeed ?
- Are there any ischaemic complications ?

Collateral pathways


PPH after failed IIA ligation value of pelvic embolization Fargeaudou Y et al Eur Radiol (2010) 20: 1777–1785

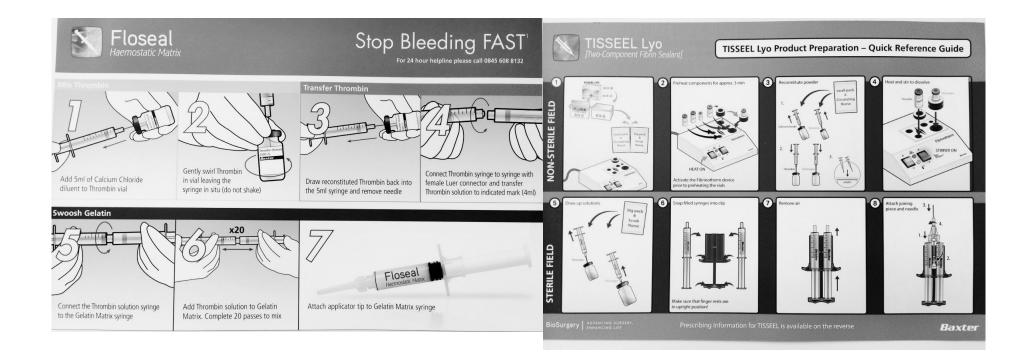
- 12 cases reviewed Embolization
- 8 collaterals
- 4 failed ligations


- 11stopped bleeding
- 2 ischaemic complications

Examples

Embolisation can complete occlusion and take out collateral pathways

 More precise control of bleeding but needs to be rapidly / readily available.


Vascular Occlusion / Ligation Themes

- Reduces but does not stop bleeding
- Needed when bleeding is severe.
- When other techniques are unsuccessful.
- Often used as an emergency procedure.
- Balloons, Ligations, Embolisations.
- Balance risk of ischaemic complications.

Topical haemostatic agents

H. Seyednejad^{1,3}, M. Imani³, T. Jamieson¹ and A. M. Seifalian^{1,2}

¹Division of Surgery and Interventional Science, University College London, and ²Department of Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK, and ³Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, Tehran, Iran *Correspondence to:* Professor A. M. Seifalian, Academic division of Surgical and Interventional Sciences, University College London, London NW3 2PF, UK (e-mail: a.seifalian@ucl.ac.uk) *British Journal of Surgery* 2008; **95**: 1197–1225

Summary surgical control of bleeding

- 1. When you can plan for it. (tumours)
- 2. <u>Suture</u>, glue, coagulate the tissue bleeding
- 3. With major bleeding other strategies may be needed
- 4. Packing get out of jail
- 5. Vascular occlusion buy time, aid definitive control, success not guaranteed.