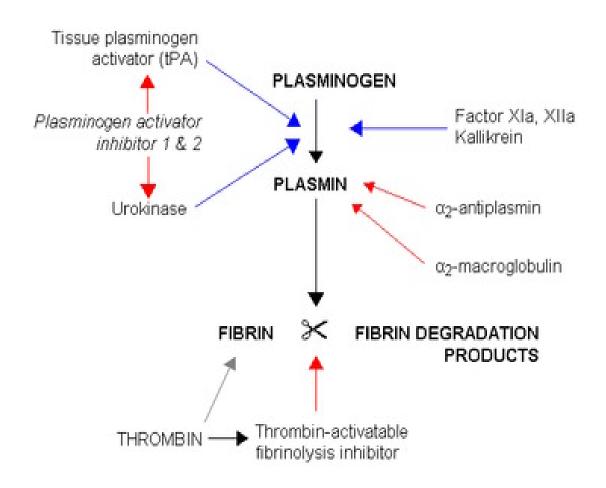
Too Much To Lose

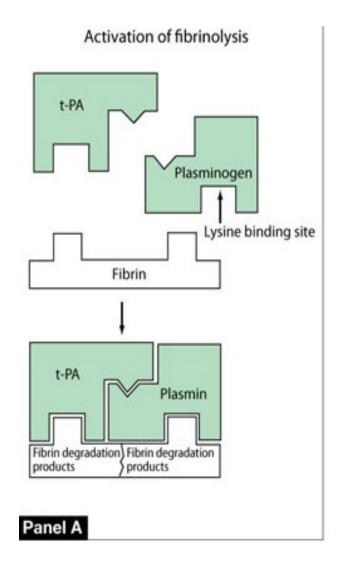
Pharmacological Management of Major Haemorrhage in Trauma

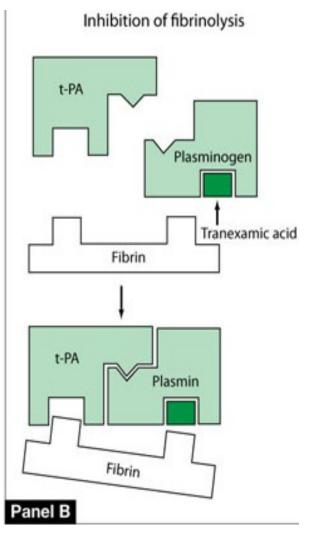
Dr Jonathan Shelton

Epidemiology of Trauma


- 5 million deaths per year worldwide
- 90% in low and middle income countries
- 3rd leading cause of death in developed world
- Estimated 20 000 cases of major trauma in England each year
 - 5 400 deaths
- Leading cause of death in those <40yrs

Epidemiology of Trauma


- Massive cost
 - Life years lost
 - Financial
- Cause of death
 - Neurological injury 40-50%
 - Haemorrhage 30-40%
 - Multiorgan failure 20%


Pharmacotherapy

Tranexamic acid

Tranexamic acid

Tranexamic acid

- History
 - -1966
 - First described
 - -1970's
 - Dental extraction in haemophiliacs
 - 1980's and 90's
 - Extended surgical uses

Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion (Review)

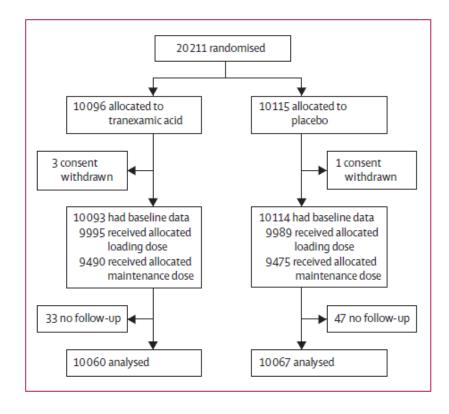
Henry DA, Carless PA, Moxey AJ, O'Connell D, Stokes BJ, Fergusson DA, Ker K

Analysis 2.7. Comparison 2 Tranexamic Acid versus Control (Blood Transfusion & Blood Loss), Outcome 7
Units of Allogeneic Blood Transfused - All Patients.

Review: Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion

Compartson: 2 Transxamic Add versus Control (Blood Transfusion % Blood Loss)

Outcome: 7 Units of Allogeneic Blood Transfused - All Patients


Study or subgroup	TXA		Control		Mean Difference	Mean Difference
	N	Mean(SD)	N	Mean(SD)	IV,Random,95% CI	N/Random,95% CI
Armellin 2001	143	0.41 (0.93)	140	0.87 (1.3)	•	-046 [-0.72, -0.20]
Blauhut 1994	15	0.8 (LOB)	14	157 (15)	 	-0.77 [-1.73, 0.19]
Caglar 2008	50	O3 (OB)	50	0.3 (0.7)	+	0.0 [-0.29, 0.29]
Corbeau 1995	41	08 (1.1)	20	1.7 (1.8)	-	-090 [-1.76, -004]
Dalmau 2000	42	5.33 (5.77)	40	7.75 (63)		-2.42 [-5.04, 0.20]
Diprose 2005	60	Q87 (L52)	60	1.68 (351)		-0.81 [-1.78, 0.16]
Hilpala 1995	15	1.5 (1.3)	13	33 (1.8)		- L80 [-2.98, -0.62]
Hilpala 1997	39	1 (1.2)	38	3.1 (1.6)		-2.10 [-2.73, -1.47]
Horrow 1990	IB	0.92 (0.8)	20	0.76 (1.08)	+	0.16 [-0.44, 0.76]
Janson 1999	2.1	Q46 (L45)	21	25 (2.47)		-204 [-3.24, -0.82]
Jimenez 2007	24	1.58 (0.49)	26	3.21 (0.55)	-	-L63 [-1.92, -1.34]
Katoh 1997	62	1.42 (2.74)	31	3.03 (4.57)		-1.61 [-3.36, 0.14]
Kazemi 2010	32	0.31 (0.64)	32	0.84 (0.9)	-	-053 [-091, -0.15]
MacGillyray 2010	40	0.76 (0.75)	20	1.11 (0.97)	-	-0.35 [-0.83, 0.13]
Maddall 2007	111	2.03 (0.78)	111	3.17 (0.97)	•	-L14 [-1.37, -Q91]
Murphy 2006	50	0.38 (0.81)	50	0.34 (0.59)	+	0.04 [-0.24, 0.32]
Speekenbrink 1995	15	2.87 (1.9)	15	3.13 (3.3)		-0.26 [-2.19, 1.67]
Uozaki 2001	6	4.1 (2.23)	6	9.16 (6.6)		-5.06 [-10.63, 0.51]
Velen 2002	15	0 (0)	15	0.27 (0.7)	+	0.0 [0.0, 0.0]
Will 2006	36	1.27 (0.07)	40	L33 (0)	•	0.0 [0.0, 0.0]
Worg 2008	73	0.89 (1.8)	74	1.35 (2.16)		-0.46 [-1.10, 0.18]
Yassen 1993	10	7.9 (3.3)	10	12.4 (8)		-4.50 [-9.86, Q.86]
Zabeorta 2002	25	0.52 (0.9)	25	L68 (I)	-	-L16 [-1.490.63]
Total (95% CI)	943		871		•	-0.87 [-1.20, -0.53]
Heterogonetty: Tau ² = 0.4			001); 12 =87%			
Test for overall effect; Z =	5.04 (P < 0.0	(10000)				

Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial

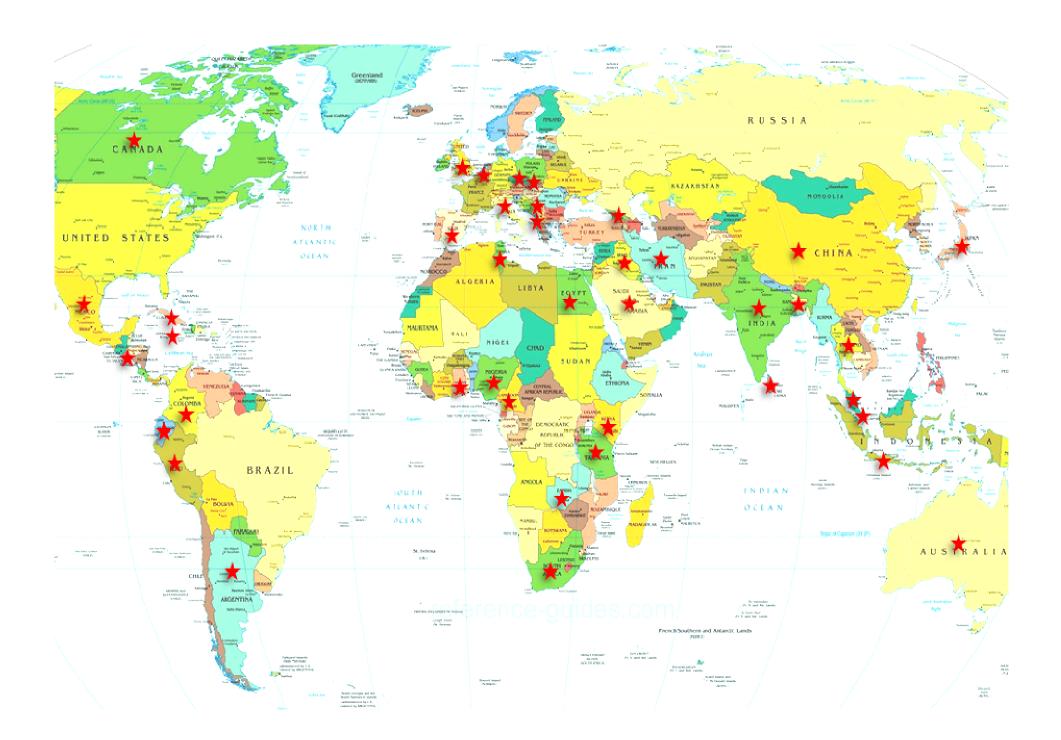
www.thelancet.com Published online June 15, 2010

CRASH-2 trial collaborators*

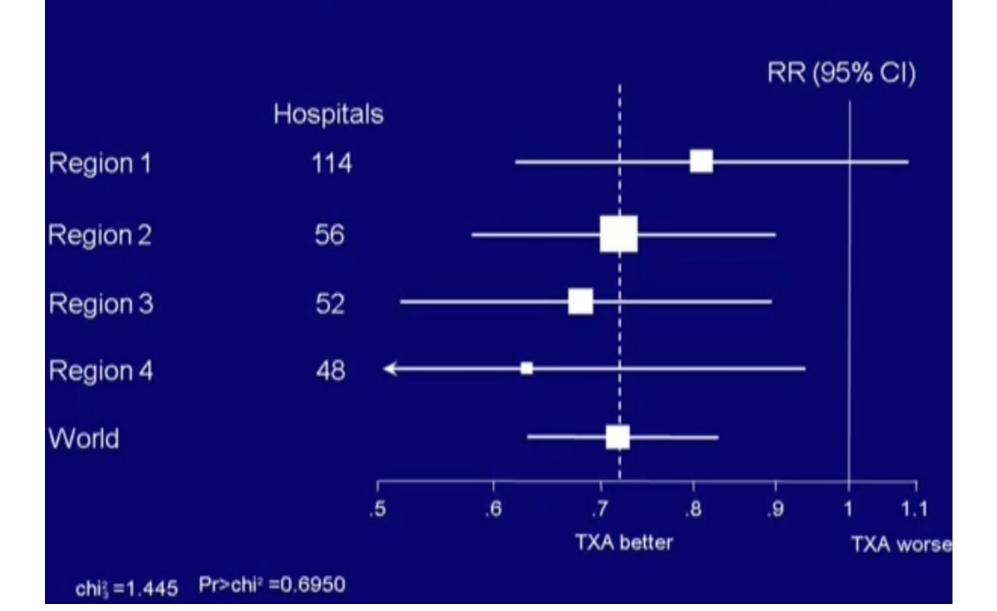
Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial

www.thelancet.com Published online June 15, 2010

CRASH-2 trial collaborators*


	Tranexamic acid (n=10 060)	Placebo (n=10 067)	RR (95% CI)	p value
Vascular occlusive events*				
Any vascular occlusive event	168 (1.7%)	201 (2-0%)	0-84 (0-68-1-02)	0.084
Myocardial infarction	35 (0.3%)	55 (0.5%)	0.64 (0.42-0.97)	0-035
Stroke	57 (0.6%)	66 (0.7%)	0.86 (0.61-1.23)	0-42
Pulmonary embolism	72 (0.7%)	71 (0.7%)	1.01 (0.73-1.41)	0.93
Deep vein thrombosis	40 (0.4%)	41 (0.4%)	0.98 (0.63-1.51)	0.91

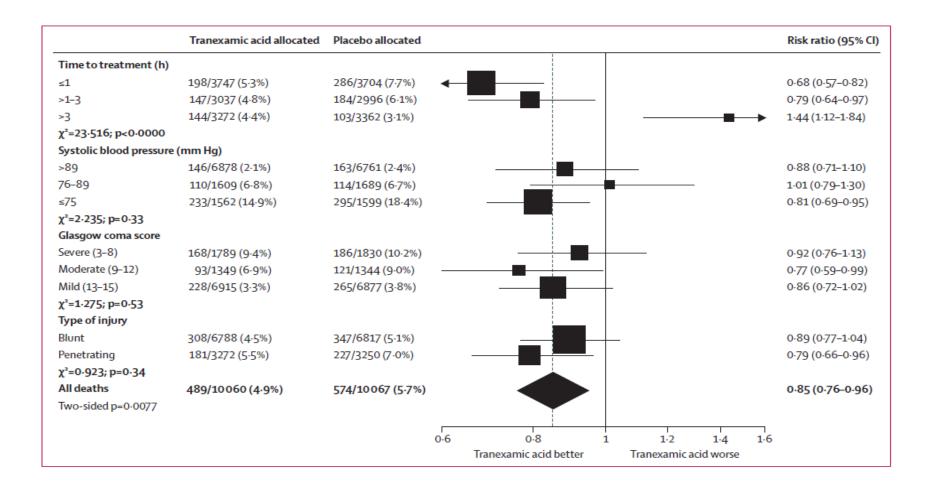
Criticisms


- No documentation of number of patients screened
- No major haemorrhage protocol
 - No documentation of transfusion ratios
- No supporting data to mortality benefit
 - No evidence of hyperfibrinolysis
 - No reduction in number of units transfused
- No injury severity score

Criticisms

- Predominantly in low and middle income countries
 - Pre-hospital care
 - Hospital care
 - Detection of vascular events
- Younger cohort
 - Less comorbidities
 - Less aspirin/warfarin/etc

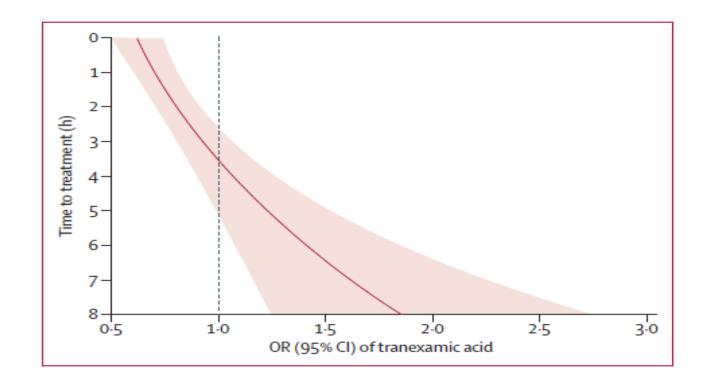
Bleeding deaths: geographical region



The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial

The CRASH-2 collaborators*

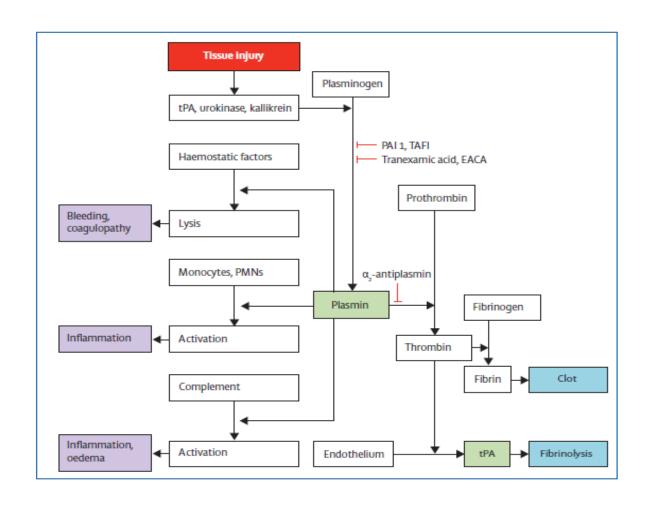
www.thelancet.com Published online March 24, 2011



The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial

www.thelancet.com Published online March 24, 2011

The CRASH-2 collaborators*



Antifibrinolytic therapy: new data and new concepts

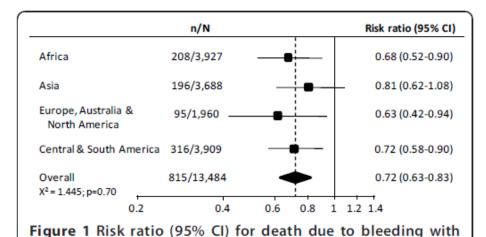
Jerrold H Levy

www.thelancet.com Published online June 15, 2010

Cost-Effectiveness Analysis of Administering Tranexamic Acid to Bleeding Trauma Patients Using Evidence from the CRASH-2 Trial

Carla Guerriero^{1*}, John Cairns¹, Pablo Perel², Haleema Shakur², Ian Roberts², on behalf of CRASH 2 trial collaborators

Item	Tanzania	India	UK
Non-ICU hospital stay (\$)*			
TXA	135,183	213,435	3,272,416
No TXA	134,641	212,315	3,255,244
TXA administration cost (\$)*			
TXA	17,483	19,550	30,830
Overall incremental cost (\$)*	18,025	20,670	48,002
Life years gained discounted*			
TXA	13,079	18,176	24,162
No TXA	12,707	17,861	23,407
Incremental life year saved*	372	315	755
Incremental cost per life year saved (\$)	48	66	64

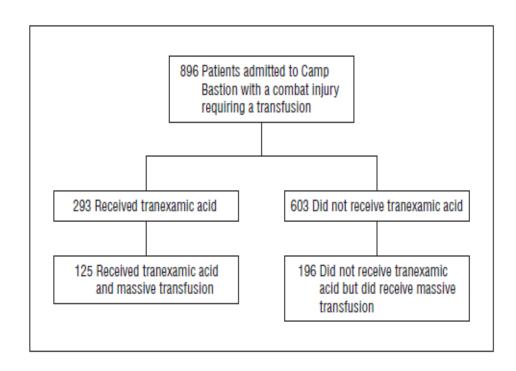

RESEARCH ARTICLE

Open Access

Avoidable mortality from giving tranexamic acid to bleeding trauma patients: an estimation based on WHO mortality data, a systematic literature review and data from the CRASH-2 trial

Katharine Ker*, Junko Kiriya, Pablo Perel, Phil Edwards, Haleema Shakur and Ian Roberts

geographical region.

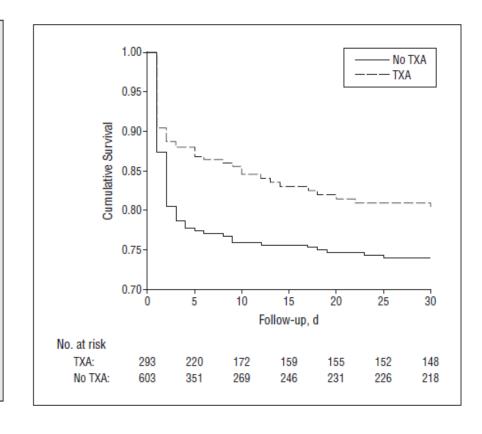

TXA given within three hours of injury, overall and by

Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study

Jonathan J. Morrison, MB ChB, MRCS; Joseph J. Dubose, MD; Todd E. Rasmussen, MD; Mark J. Midwinter, BMedSci, MD, FRCS

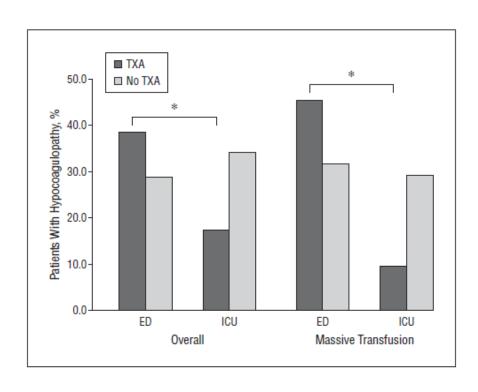
ARCH SURG/VOL 147 (NO. 2), FEB 2012

WWW.ARCHSURG.COM



Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study

Jonathan J. Morrison, MB ChB, MRCS; Joseph J. Dubose, MD; Todd E. Rasmussen, MD; Mark J. Midwinter, BMedSci, MD, FRCS


Table 2. All-Cause Mortality of Overall and Massive Transfusion Groups Within 24 Hours, Within 48 Hours, and In-Hospital Mortality

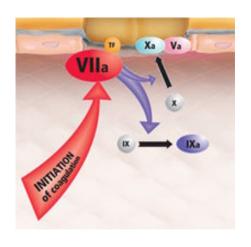
	Total No. in Follow-up		
End Point	TXA	No TXA	P Value ^a
Overall			
<24 h	293 (9.6)	603 (12.4)	.20
<48 h	264 (11.3)	507 (18.9)	.004
In-hospital mortality ^b	264 (17.4)	603 (23.9)	.03
Massive transfusion	` '	` ′	
<24 h	125 (9.6)	196 (14.8)	.17
<48 h	112 (10.4)	160 (23.5)	.003
In-hospital mortality ^c	125 (14.4)	196 (28.1)	.004

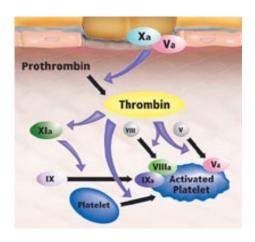
Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study

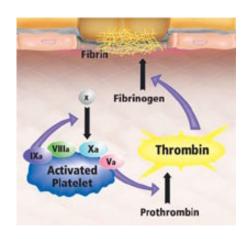
Jonathan J. Morrison, MB ChB, MRCS; Joseph J. Dubose, MD; Todd E. Rasmussen, MD; Mark J. Midwinter, BMedSci, MD, FRCS

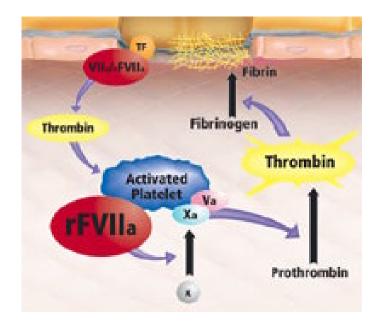
Multivariate Analysis of the Transfusion Group	e Overall Group and the	Massive
Cohort	Odds Ratio (95% CI) ^a	<i>P</i> Value ^b
Overall		
GCS score ≤8	0.304 (0.108-0.860)	.02
Hypotension	0.303 (0.107-0.855)	.02
Coagulopathy at admission	0.291 (0.113-0.749)	.01
Massive transfusion	,	
GCS score ≤8	0.027 (0.008-0.085)	<.001
ISS >15	0.359 (0.123-1.053)	.06
TXA	7.228 (3.016-17.322)	<.001

Table 1. Demographic Data, Mechanism of Injury, Injury Severity, Physiology, and Transfusion Requirement for Overall and Massive Transfusion Groups

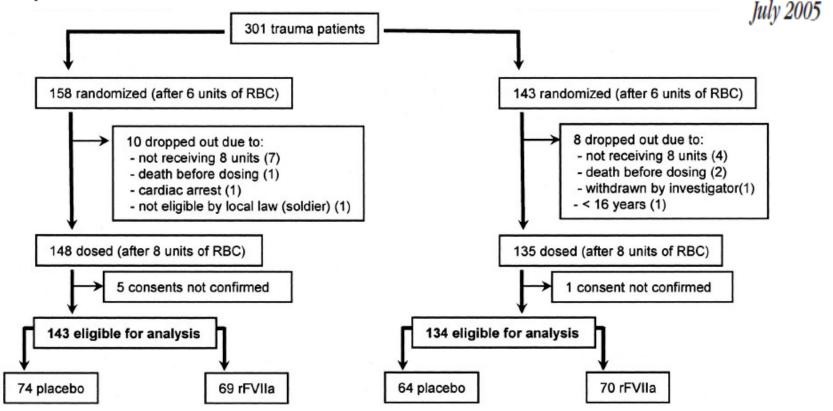

	_	Overall (N=896)		M	assive Transfusion (n=231)	
Variable	TXA (n=293)	No TXA (n=603)	<i>P</i> Value ^a	TXA (n=125)	No TXA (n=196)	<i>P</i> Value ^a
Demographic data						
Age, mean (SD), y	24.9 (9.6)	23.1 (10.1)	.12	23.8 (7.7)	22.9 (9.2)	.46
Male, %	97.3	94.2	.04	98.4	96.9	.49
Host national, No. (%)	116 (39.6)	261 (43.3)	.29	39 (31.2)	65 (33.2)	.71
NATO military	177 (60.4)	342 (56.7)		86 (68.8)	131 (66.8)	
Mechanism of injury, %						
GSW	25.3	36.7	<.001	24.0	32.1	.14
Explosion	74.7	62.4		76.0	66.8	
Injury severity						
ISS, mean (SD)	25.2 (16.6)	22.5 (18.5)	<.001	26.1 (17.1)	25.2 (20.5)	.11
AIS score ≥3, %						
Head	9.9	13.4	.13	9.6	13.8	.26
Chest	22.2	22.2	.99	21.6	23.0	.78
Abdomen	14.7	16.4	.50	13.6	21.0	.06
Extremity	66.6	47.3	<.001	68.0	51.0	.003
RTS, mean (SD)	5.53 (2.14)	6.04 (2.69)	.01	5.58 (2.21)	5.74 (2.88)	.21
Admission physiology, %	, ,			, ,		
GCS score ≤8	63.3	35.6	<.001	64.1	39.3	<.001
SBP ≤90 mm Hg	22.8	13.8	.003	20.4	18.2	.67
24-h Transfusion, mean (SD), units						
PRBCs	11.8 (12.1)	9.8 (13.1)	<.001	21.0 (12.8)	22.5 (15.9)	.47
FFP	10.3 (10.8)	8.6 (11.7)	<.001	18.4 (11.5)	19.6 (14.3)	.67
Platelets	1.6 (2.2)	1.4 (2.7)	.001	3.2 (2.4)	3.6 (3.6)	.84
Cryoprecipitate	1.6 (2.7)	0.5 (1.3)	<.001	1.6 (2.6)	0.7 (1.6)	<.001
Miscellaneous	, ,					
Time in ED, mean (SD), min	36 (25)	56 (55)	<.001	39 (27)	52 (57)	.39
Time in OR, mean (SD), min	170 (121)	115 (74)	<.001	180 (126)	113 (74)	<.001
Lowest body temperature, mean (SD), °C	36.1 (1.1)	36.4 (0.9)	.04	36.5 (0.8)	36.3 (0.9)	.28
Pulmonary embolism, No. (%)	8 (2.7)	2 (0.3)	.001	4 (3.2)	0 `	.01
Deep venous thrombosis, No. (%)	7 (2.4)	1 (0.2)	.001	2 (1.6)	1 (0.5)	.32


Tranexamic acid use


- British army
 - March 2010
- US army
 - -2011
- WHO list of essential medicines
 - March 2011
- UK ambulance service
 - July 2011
- Emergency Departments
 - **—**?


Recombinant Activated Factor VII (rFVIIa)

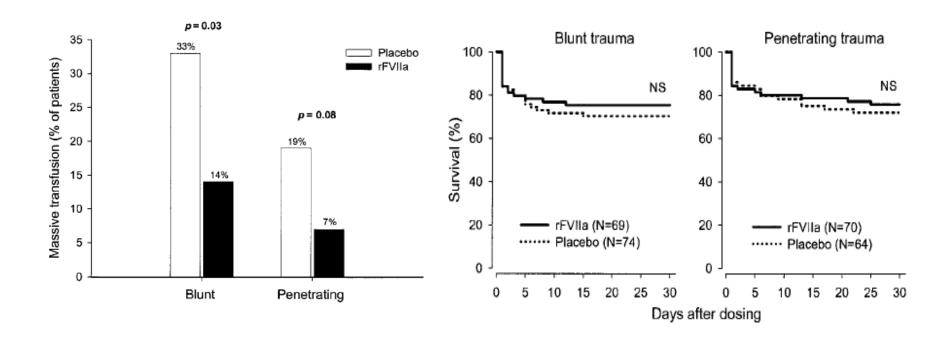
rFVIIa



rFVIIa

- History
 - -1983
 - Native VIIa halted bleeding in haemophiliacs with antibodies
 - -1988
 - Produced as recombinant product
- Licence
 - Haemophilia A/B with antibodies
 - Factor VII deficiency
 - Glanzmann's thrombasthenia

Kenneth David Boffard, MD, Bruno Riou, MD, PhD, Brian Warren, MD, Philip Iau Tsau Choong, MD, Sandro Rizoli, MD, Rolf Rossaint, MD, Mads Axelsen, MD, and Yoram Kluger, MD, for the NovoSeven Trauma Study Group

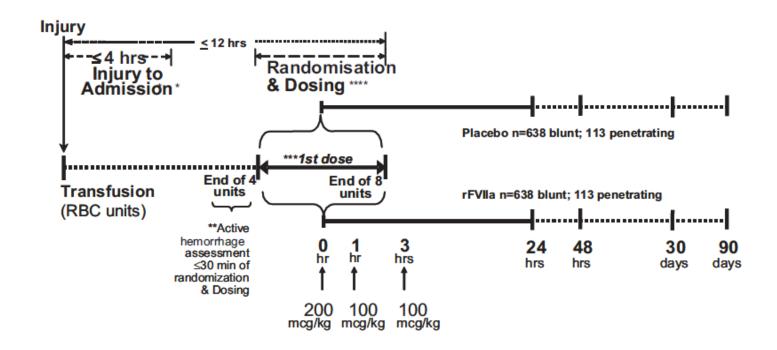


Kenneth David Boffard, MD, Bruno Riou, MD, PhD, Brian Warren, MD, Philip Iau Tsau Choong, MD, Sandro Rizoli, MD, Rolf Rossaint, MD, Mads Axelsen, MD, and Yoram Kluger, MD, for the NovoSeven Trauma Study Group

July 2005

	Placebo			rFVIIa	Estimated RBC	
	N	Median (range)	N	Median (range)	reduction with 90% CI*	$ ho^{\dagger}$
Blunt		N = 74		N = 69		
Alive at 48 h	59	7.5 (0-35)	52	7.0 (0-29)	2.6 [0.7;4.6]	0.02
All patients	72	7.2 (0-35)	64	7.8 (0-48)	2.0 ^{\(\)} [0.0;4.6]	0.07 [◊]
Penetrating		N = 64		N = 70		
Alive at 48 h	52	4.2 (0-41)	57	3.9 (0-30)	1.0 [0.0;2.6]	0.10
All patients	61	4.8 (0-41)	69	4.0 (0-37)	0.2° [-0.9;2.4]	0.24 [◊]

Kenneth David Boffard, MD, Bruno Riou, MD, PhD, Brian Warren, MD, Philip Iau Tsau Choong, MD, Sandro Rizoli, MD, Rolf Rossaint, MD, Mads Axelsen, MD, and Yoram Kluger, MD, for the NovoSeven Trauma Study Group


Kenneth David Boffard, MD, Bruno Riou, MD, PhD, Brian Warren, MD, Philip Iau Tsau Choong, MD, Sandro Rizoli, MD, Rolf Rossaint, MD, Mads Axelsen, MD, and Yoram Kluger, MD, for the NovoSeven Trauma Study Group

comes
:0

	Blunt trauma			Penetrating trauma		
	Placebo (N = 74)	rFVIIa (N = 69)	Placebo (N = 64)	rFVIIa (N = 70)		
Serious adverse events						
Patients with events	49 (66%)	44 (64%)	36 (56%)	36 (51%)		
Number of events	109	91	76	57		
Thromboembolic adverse events						
Patients with events	3 (4%)	2 (3%)	3 (5%)	4 (6%)		
Number of events	3	2	3	4		

Results of the CONTROL Trial: Efficacy and Safety of Recombinant Activated Factor VII in the Management of Refractory Traumatic Hemorrhage

Carl J. Hauser, MD, Kenneth Boffard, MD, Richard Dutton, MD, Gordon R. Bernard, MD, Martin A. Croce, MD, John B. Holcomb, MD, Ari Leppaniemi, MD, Michael Parr, MD, Jean-Louis Vincent, MD, PhD, Bartholomew J. Tortella, MD, MBA, Jeannett Dimsits, MD, and Bertil Bouillon, MD; for the CONTROL Study Group

Results of the CONTROL Trial: Efficacy and Safety of Recombinant Activated Factor VII in the Management of Refractory Traumatic Hemorrhage

Carl J. Hauser, MD, Kenneth Boffard, MD, Richard Dutton, MD, Gordon R. Bernard, MD, Martin A. Croce, MD, John B. Holcomb, MD, Ari Leppaniemi, MD, Michael Parr, MD, Jean-Louis Vincent, MD, PhD, Bartholomew J. Tortella, MD, MBA, Jeannett Dimsits, MD, and Bertil Bouillon, MD; for the CONTROL Study Group

TABLE 2.	Clinical	Outcomes ((30-d ITT	Analysi	s)
----------	----------	------------	-----------	---------	----

	Blunt Trauma			Pene	Penetrating Trauma		
	rFVIIa (n = 218)	Placebo (n = 242)	p	rFVIIa (n = 44)	Placebo (n = 38)	p	
30-d mortality, n (%)	24 (11.0)	26 (10.7)	0.93 [†]	8 (18.2)	5 (13.2)	0.40^{\dagger}	
			0.37^{\ddagger}				
Durable morbidity*, n (%)	19 (8.7)	23 (9.5)	0.75	1 (2.3)	0	1.00	
Days alive and free from ventilator/RRT through day 30, mean ± SD	17.2 ± 10.3	16.4 ± 10.3	0.31	21.2 ± 11.1	21.9 ± 10.0	0.73	
Days alive and free of ICU through day 30	13.7 ± 10.4	12.9 ± 9.9	0.32	18.7 ± 11.2	19.5 ± 10.6	0.65	
MOF through day 30§, n (%)	98 (45.0)	129 (53.3)	0.06	10 (22.7)	9 (23.7)	0.90	
Days alive and free from MOF through day 30§, mean ± SD	24.6 ± 9.7	24.4 ± 9.4	0.66	24.1 ± 11.6	25.4 ± 10.2	0.45	
SOF through day 30, n (%)	214 (98.2)	235 (97.1)	0.49	40 (90.9)	35 (92.1)	0.91	
Days alive and free from SOF through day 30, mean ± SD	19.9 ± 8.9	19.5 ± 8.6	0.53	21.9 ± 11.1	23.1 ± 9.8	0.50	
Days alive and free of hospital through day 30	4.0 ± 6.9	3.5 ± 6.4	0.39	13.2 ± 10.4	11.3 ± 9.1	0.71	

 TABLE 3.
 Transfusion Requirements (ITT Population)

	Blunt Trauma					Penetrating Trauma				
	rFVIIa (n = 221)		Placebo (n = 247)			rFVIIa (n = 46)		Placebo (n = 40)		
	N*	Mean ± SD	N*	Mean ± SD	p^{\dagger}	N*	Mean ± SD	N*	Mean ± SD	p^{\dagger}
Units administered from dosing to 24 h										
Allogeneic transfusions	198	17.1 ± 26.8	228	20.7 ± 25.7	0.03	39	11.2 ± 15.0	35	16.8 ± 19.3	0.09
RBC	184	6.9 ± 10.4	222	8.1 ± 10.9	0.04	37	4.5 ± 7.3	33	6.2 ± 6.5	0.11
FFP	160	4.7 ± 6.4	188	6.9 ± 8.6	< 0.001	29	3.8 ± 6.0	33	5.7 ± 6.4	0.04
Platelets	112	3.3 ± 8.4	117	3.4 ± 7.0	0.84	15	1.6 ± 3.7	21	2.5 ± 4.1	0.08
Fibrinogen concentrate	28	1.5 ± 6.7	28	1.3 ± 4.7	0.68	1	0.1 ± 0.4	1	0.4 ± 2.7	0.92
Cryoprecipitate	34	0.9 ± 3.3	41	1.3 ± 4.3	0.66	8	1.6 ± 4.1	11	2.0 ± 4.8	0.33
Units administered from dosing to 48 h										
Allogeneic transfusions	201	19.0 ± 27.1	231	23.5 ± 28.0	0.04	39	12.2 ± 15.7	37	18.4 ± 20.7	0.06
RBC	191	7.8 ± 10.6	228	9.1 ± 11.3	0.04	39	5.0 ± 7.4	35	6.8 ± 6.9	0.11
FFP	166	5.3 ± 6.7	195	8.0 ± 10.1	0.001	29	4.0 ± 6.2	33	6.5 ± 7.6	0.02
Platelets	117	3.7 ± 8.6	124	3.9 ± 7.8	0.95	16	1.9 ± 3.9	21	2.7 ± 4.1	0.12
Fibrinogen concentrate	29	1.5 ± 6.7	28	1.3 ± 4.8	0.59	1	0.1	1	0.4	0.92
Cryoprecipitate	34	0.9 ± 3.3	41	1.4 ± 4.5	0.64	8	1.6 ± 4.1	11	2.0 ± 4.8	0.33
Patients requiring massive RBC transfusion (≥10 units of RBC) from injury to 24-h postdose, n (%) [‡]		111 (50.2)		134 (54.3)	0.38		14 (30.4)		21 (52.5)	0.04

Results of the CONTROL Trial: Efficacy and Safety of Recombinant Activated Factor VII in the Management of Refractory Traumatic Hemorrhage

Carl J. Hauser, MD, Kenneth Boffard, MD, Richard Dutton, MD, Gordon R. Bernard, MD, Martin A. Croce, MD, John B. Holcomb, MD, Ari Leppaniemi, MD, Michael Parr, MD, Jean-Louis Vincent, MD, PhD, Bartholomew J. Tortella, MD, MBA, Jeannett Dimsits, MD, and Bertil Bouillon, MD; for the CONTROL Study Group

TABLE 4.	Adverse Events	Through	Day 90	(Safety	Population)
----------	----------------	---------	--------	---------	-------------

	Blunt Trauma		Penetrating Trauma			
	rFVIIa (n = 224)	Placebo (n = 250)	p	rFVIIa (n = 46)	Placebo (n = 40)	p
Serious adverse events						
Patients with events, n (%)	147 (65.6)	177 (70.8)	0.23	18 (39.1)	20 (50.0)	0.31
Number of events	348	390		35	44	
Average number of events per patient	2.4	2.2		1.9	2.2	
Thrombotic AEs*						
Patients with events, n (%)	36 (16.1)	33 (13.2)	0.38	2 (4.3)	4 (10.0)	0.41
Number of events	45	35		2	5	
Arterial thrombotic AEs, no. events	16	11	0.20	2	1	1.00
Venous TEs, no. events	29	24	0.25	0	4	0.04^{\dagger}

Use of Recombinant Factor VIIa in US Military Casualties for a Five-Year Period

Charles E. Wade, PhD, Brian J. Eastridge, MD, John A. Jones, BS, Susan A. West, RN, Philip C. Spinella, MD, Jeremy G. Perkins, MD, Michael A. Dubick, PhD, Lorne H. Blackbourne, MD, and John B. Holcomb, MD

TABLE 1. Criteria for the Use of rFVIIa in the Military Clinical Practice Guidelines

- a. Hypotensive from blood loss
- b. Base deficit >6 mmol/L
- c. Difficult to control bleeding associated with hypothermia (temperature <96°C)
- d. Coagulopathic bleeding (clinically or INR >1.5)
- Require damage control maneuvers
- f. Require fresh whole blood
- g. Anticipated or actual transfusion of >4 units of PRBC
- h. Anticipated significant operative hemorrhage

Use of Recombinant Factor VIIa in US Military Casualties for a Five-Year Period

Charles E. Wade, PhD, Brian J. Eastridge, MD, John A. Jones, BS, Susan A. West, RN, Philip C. Spinella, MD, Jeremy G. Perkins, MD, Michael A. Dubick, PhD, Lorne H. Blackbourne, MD, and John B. Holcomb, MD

TABLE 9. After Propensity Matching Demographic, Admission, and Laboratory Variables of Patients Not Treated and Treated With rFVIIa

Variable	No rFVIIa (n = 266)	rFVIIa (n = 266)
Age (yr)	24 (21–28; 265)	24 (21–29; 266)
ISS	22 (14-30; 266)	25 (16-29; 266)
ISS >15 (%)	71	76
GCS score	15 (7–15; 266)	15 (4–15; 266)
SBP (mm Hg)	114 (93-136; 266)	115 (90-133; 266)
DBP (mm Hg)	64 (47–76; 266)	63 (47–76; 266)
Heart rate (beats per minute)	111 (89-131; 266)	110 (88-130; 266)
Temperature (°C)	98.0 (97.2–99.0; 179)	98.1 (97.3-99.1; 176)
BD	4 (2-8; 209)	5 (2-9; 210)
INR	1.3 (1.2-1.6; 208)	1.4 (1.1-1.8; 209)
Hgb (g/dL)	12 (10-13; 266)	12 (10-14; 266)
Sum PRBC (units)	10 (4–17; 266)	10 (6-16; 266)
Plasma (units)	5 (2-9; 266)	6* (3–10; 266)
Platelets	0 (0-1; 264)	0 (0-1; 266)
Cryoprecipitate	0 (0-0; 264)	0 (0-0; 266)
Massive transfusion (%)	53	51

TABLE 7. The Mortality Rate for the Overall Patient Population and After Propensity Analysis for Patient Treated or Not Treated With rFVIIa

Overall	6 h (%)	24 h (%)	30 d (%)	Overall (%)
No rFVIIa (n = 1544)	7.4	8.5	10.8	11.7
rFVIIa ($n = 506$)	10.9*	13.6*	22.3*	23.5*
Propensity matched				
No rFVIIa (n = 266)	6.8	9.4	13.5	14.3
rFVIIa (n = 266)	10.5	11.6	18.8	19.9

^{*} Significantly different at p < 0.01.

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

NOVEMBER 4, 2010

VOL. 363 NO. 19

Safety of Recombinant Activated Factor VII in Randomized Clinical Trials

Marcel Levi, M.D., Jerrold H. Levy, M.D., Henning Friis Andersen, M.Sc., and David Truloff, D.V.M.

Table 2. Odds Ratios for Thromboembolic Events.					
Thromboembolic Event	rFVIIa (N = 2583)	Placebo (N = 1536)	Odds Ratio (95% CI)*	P Value	
	number (_l	percent)†			
All events	264 (10.2)	134 (8.7)	1.17 (0.94–1.47)	0.16	
Arterial events	141 (5.5)	49 (3.2)	1.68 (1.20-2.36)	0.003	
Venous events	137 (5.3)	88 (5.7)	0.93 (0.70–1.23)	0.61	

^{*} Odds ratios were calculated by means of logistic regression with adjustment for age and type of bleeding.

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

NOVEMBER 4, 2010

VOL. 363 NO. 19

Safety of Recombinant Activated Factor VII in Randomized Clinical Trials

Marcel Levi, M.D., Jerrold H. Levy, M.D., Henning Friis Andersen, M.Sc., and David Truloff, D.V.M.

Table 4. All Arterial Thromboembolic Events, According to Age.					
Age Group	rFVIIa	Placebo	Odds Ratio (95% CI)*	P Value†	
	no./total	no. (%)‡			
<18 yr	1/70 (1.4)	1/51 (2.0)			
18–64 yr	73/1764 (4.1)	34/1107 (3.1)	1.36 (0.89–2.08)	0.15	
≥65 yr	67/742 (9.0)	14/372 (3.8)	2.43 (1.34-4.41)	0.003	
65–74 yr	33/427 (7.7)	8/225 (3.6)	2.12 (0.95-4.71)	0.07	
≥75 yr	34/315 (10.8)	6/147 (4.1)	3.02 (1.22–7.48)	0.02	

^{*} Odds ratios were calculated by means of logistic regression with adjustment for indication.

Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia (Review)

Simpson E, Lin Y, Stanworth S, Birchall J, Doree C, Hyde C

This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in *The Cochrane Library* 2012, Issue 4

Analysis 3.4. Comparison 3 rFVIIa used prophylactically or therapeutically versus placebo (adverse events), Outcome 4 Total arterial events.

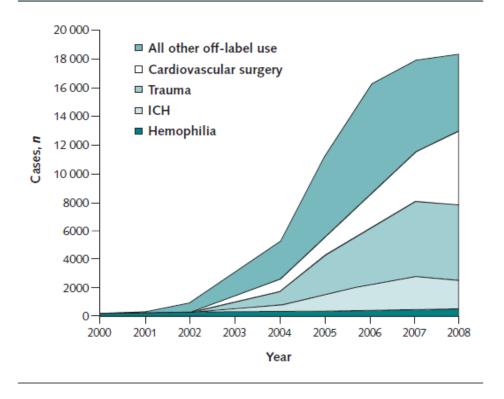
Review: Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia

Comparison: 3 rFVIIa used prophylactically or therapeutically versus placebo (adverse events)

Outcome: 4 Total arterial events

	rFVIIa	Control	Rísk Ratío M-	Risk Ratio
	n/N	n/N	H,Random,95% CI	H,Random,9! Cl
Planínsic 2005	6/64	2/19	-	0.89 [0.20, 4.06]
Friederich 2003	1/24	0/12		1.56 [0.07, 35.67]
Bosch 2004	2/121	0/121		5.00 [0.24, 103.07]
Boffard 2005a	1/69	0/74		3.21 [0.13, 77.60]
Boffard 2005b	2/70	1/64		1.83 [0.17, 19.69]
Chuansumrit 2005	0/16	0/9		0.0 [0.0, 0.0]
Diprose 2005	2/10	2/10		1.00 [0.17, 5.77]
Lodge 2005a	2/132	0/68		2.59 [0.13, 53.28]
Mayer 2005a	16/303	0/96		10.53 [0.64, 173.88]
Mayer 2005b	4/36	0/11		2.92 [0.17, 50.37]
Pihusch 2005	5/77	0/23		
				3.38 [0.19, 59.02]
Raobaíkady 2005	0/24	0/24		0.0 [0.0, 0.0]
Ekert 2006	0/40	0/36		0.0 [0.0, 0.0]
Ma 2006	0/11	0/11		0.0 [0.0, 0.0]
Mayer 2006	4/32	3/8	-	0.33 [0.09, 1.20]
Shao 2006	1/151	O/8 I		1.62 [0.07, 39.28]
Johansson 2007	0/9	0/9		0.0 [0.0, 0.0]
Pugliese 2007	0/10	0/10		0.0 [0.0, 0.0]
Sachs 2007	8/36	2/13		1.44 [0.35, 5.94]
Bosch 2008	3/176	0/89		3.56 [0.19, 68.16]
Mayer 2008	39/558	11/263	 -	1.67 [0.87, 3.21]
Narayan 2008	6/61	4/36	-	0.89 [0.27, 2.93]
Gill 2009	4/104	1/68		2.62 [0.30, 22.90]
Hauser 2010a	16/224	11/250	 -	1.62 [0.77, 3.42]
	2/46	1/40		1.74 [0.16, 18.47]
Hauser 2010b				

rFVIIa use

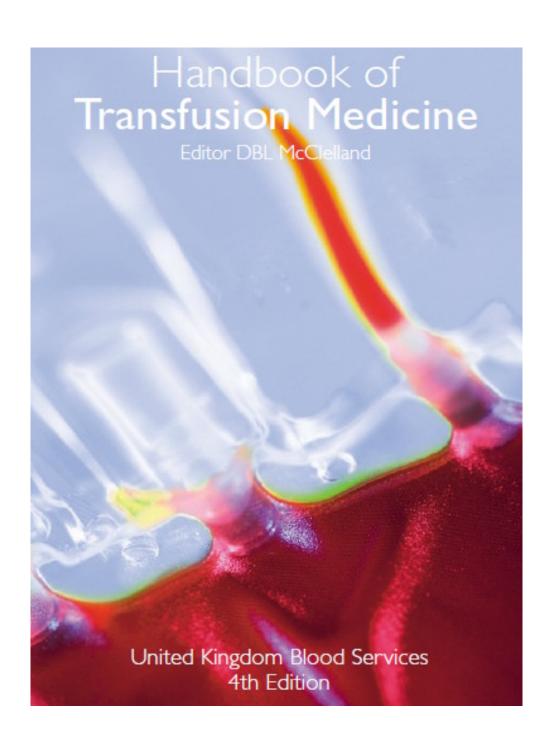

- Major Haemorrhage guidelines
 - Civilian and military
 - "consider" use
 - Low grade of recommendation

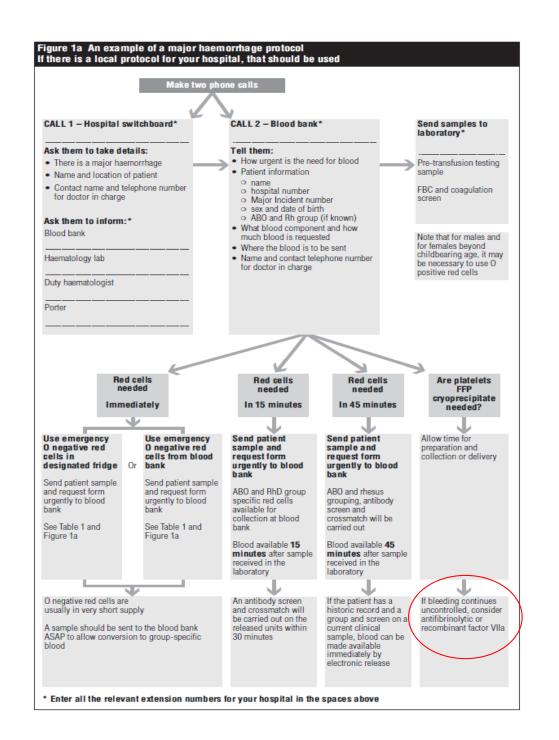
Annals of Internal Medicine

Off-Label Use of Recombinant Factor VIIa in U.S. Hospitals: Analysis of Hospital Records

Aaron C. Logan, MD, PhD; Veronica Yank, MD; and Randall S. Stafford, MD, PhD

Figure 1. Estimated annual in-hospital cases of recombinant factor VIIa use for hemophilia and off-label indications.




rFVIIa use

Acidosis

Hypothermia

Coagulopathy

AAGBI SAFETY GUIDELINE

Blood Transfusion and the Anaesthetist

Management of Massive Haemorrhage

Published by
The Association of Anaesthetists of Great Britain and Ireland
21 Portland Place, London, W1B 1PY
Telephone 020 7631 1650 Fax 020 7631 4352
info@aagbi.org
www.aagbi.org
Nov

November 2010

Summary

- Tranexamic acid
 - Single large RCT with mortality benefit
 - Safe
 - Lacking supporting data
 - Applicable to low and middle income countries
 - Applicable to high income countries?
 - Widely used

Summary

- rFVIIa
 - Single RCT stopped early with no mortality benefit
 - Questionable safety
 - Secondary benefits of reduced transfusion requirements
 - Widely used?

Thank you