Laboratory investigation in the Bleeding Patient

Dr Craig Taylor
Consultant Haematologist
May 2016
Introduction

• Bleeding is common
• May consume significant resources
 – Crossmatched blood
• Lab results may be misinterpreted
• There is often an assumption that the cause is the abnormal blood tests
 – May be the other way round
• Investigation is mostly not in the lab!
Typical Case in EAU

- 52 year old male
- Presents to EAU with haematemesis
 - Fresh red blood
 - ‘toilet pan full’
What would we like to know from the lab tests?

• How much has he bled?
 – What volume has he lost
• Is he still bleeding?
• Where is he bleeding from?
• Does he have adequate clotting to stop the bleeding?
 – Is there a bleeding tendency
• Does he need blood component support?
How much blood has he lost?

• FBC
 – HB 130
 – Wbc 12
 – Plts 430

• But how do we interpret this?
Physiological factors

• Blood loss initially causes loss of circulating volume
• Volume is replaced initially by protein poor fluid influx
• And then by albumin containing extracellular fluid

• Restoration of blood volume after single bleed may take 20-60hrs (or more)
Blood volume and plasma protein changes following haemorrhage (in dogs)

– T Miller 1944
Change in HCT following bleed (in dogs)

- T Miller 1944
Other factors?

• When did the bleed start?
 – How long after the bleed is he presenting
• What was the Hb before the bleed?
• Have fluids been given?
 – How much?
 – When?
 – Often underestimated?
How much blood loss?

• Don’t know!
• Clinical picture will be more informative.

• What if significant anaemia?
 – Same factors need to be considered (esp fluids)
 – Must consider whether this may be a chronic
Look for signs of chronic anaemia

- Low MCV and MCH?
 - Suggestion of Fe deficiency?
 - Or anaemia of chronic disease

- High MCV
 - Suggestion of B12/Folate deficiency?
 - Or hypothyroidism?
 - Or haemolysis?
 - Or liver disease?
 - Or alcohol excess?
Is he still bleeding?

- Serial FBC’s?
 - Same factors need to be taken into account
- Reticulocyte count?
 - Rises after 3-5 days.
 - Peaks at 10 days following bleed.
Is his clotting adequate?

- Needs to be able to clot to plug the hole!
- Is there an underlying clotting problem?
- Has he used them all up?

- What is it that we need to measure?
Injury

TF/VIIa

IXa

IX

Prothrombin (II)

Thrombin (IIa)

X

Fibrinogen (I)

Fibrin monomer

Stable Fibrin

Plasminogen

Activator Inhibitors

Plasminogen Activators (TPA, urokinase)

Antiplasmins (α1 antitrypsin, α2 antiplasmin)

TFPI

ATIII (heparin)

Protein S

Protein C

Protein Ca

Red = Vitamin K dependant

= Activates

= Inhibits
Clotting tests?

• INR (or Prothrombin time)
 – Mostly dependent on ‘liver factors’
 • Factors II, VII, IX, X
 – Prolonged in
 • liver failure
 • Warfarin therapy
 • Factor VII deficiency
 • DIC/Consumption
• APTT
 – Sensitive to deficiencies in the ‘intrinsic pathway’
 • Factors XII, XI, X, VII, IX........II
 – Prolonged in:
 • Unfractionated heparin therapy
 • Haemophilia – FVIII, FIX deficiency
 • FXII, FXI deficiency
 • Antiphospholipid syndrome
 • Contact factor deficiencies..........
 • DIC/Consumption
• Fibrinogen?
 – Can't make a clot without Fibrinogen (Factor 1)!
 – Low in:
 • Congenital deficiency
 • DIC/Consumption

• But are you being given an actual fibrinogen level?
Derived versus measured Fibrinogen

• The fibrinogen level can be ‘derived’ from the rate of formation of the clot in the PT/INR test
 – Produced automatically by analysers
 – Rapid and cheap

• Can also be measured directly using functional assay – Clauss fibrinogen
 – More accurate
 – Especially when levels are low
Fibrinogen in the bleeding patient?

- Laboratory practice will vary
 - Clauss for all?
 - Screen with derived?
- Clauss should be used if level may be low
 - I.e. May need to replace
- Which result are you getting?
What about other anticoagulants?

- **LMWH**
 - Act mostly on FXa
 - Have no or little effect on routine clotting results
 - Can assay anti-Xa activity – not in emergency

- **NOACS/DOACS**
 - May not affect routine clotting at therapeutic levels
 - May get varying results with different reagents
• Dabigatran (direct thrombin inhibitor)
 – May affect the INR/APTT
 – Normal results may suggest a low level
 – Normal TT excludes residual effect
• Rivaroxaban (direct Xa inhibitor)
 – May affect the INR/APTT (not TT)
 – May have ‘prophylactic’ levels with normal results
• BUT – Only in labs where the sensitivity of their reagents has been confirmed
Interpreting Patient results (1)

- INR 10
- APTT 1.5
- Fibrinogen 4.5

- Disproportionate rise in INR
- Almost certainly on warfarin
Interpreting patient results (2)

- INR 1.0
- APTT 2.1
- Fib 3.8

- Isolated prolongation of APTT
- Is he on unfractionated heparin?
- Is he a haemophiliac?
- Does he have acquired haemophilia?
- Does he have anti-phospholipid syndrome?
- Does he have a clinically irrelevant factor deficiency
Interpreting patient results (3)

- INR 2.0
- APTT 1.8
- Fibrinogen 1.2

- Suggests consumption/DIC
Does Renal failure contribute?

• End stage renal disease
 – May have platelet dysfunction
 – Due to ‘uraemic toxins’

• Dialysis patients
 – Often use heparin

• New onset renal dysfunction
 – Are they on LMWH or a DOAC?
 • These are renal excreted
 • May be ‘supratherapeutic’
Conclusions/Take home messages

- Need to understand what question is being asked of the lab tests
- Hb may be a poor indicator of blood loss
- Clotting is a complex process
 - Lab tests are imperfect
- Effects of DOACS are hard to measure, and reagent dependent