

Hepatitis E & Blood Components:

Dr Fiona Regan

Consultant Haematologist

NHSBT, Colindale & Imperial College Healthcare NHS Trust, London

(With thanks to Dr Jayne Peters, Haematology ST5 NHS Blood and Transplant, Plymouth Grove, Manchester and Prof Richard Tedder, PHE England– for some graphics/slides)

HEV: RNA virus; 4 genotypes:

1 + 2 are human viruses (1 is travel-associated)

3 + 4 are animal viruses (transmitted zoonotically)

5+ years, increase in cases of HEV acquired in UK i.e. 'non-travel associated', caused by genotype 3 (associated with pigs)

Year	Number of confirmed cases in UK
2003	124
2004	149
2005	329
2006	289
2007	162
2008	176
2009	175
2010	274
2011	456
2012	578
2013	692
2014	869
2015	190 (Jan to March)

Data: Public Health England. *Hepatitis E: symptoms, transmission, treatment and prevention*. Accessed online via: <u>https://www.gov.uk/government/publications/hepatitis-e-symptoms-transmission-prevention-treatment</u> on 8th September 2015

Hepatitis E

- HEV: oral-faecal route (sewage contamination) in developing countries
- In developed counties, transmission by:
 - Diet: eating under-cooked pork/game, processed pork products and some shell fish
 - Blood components and SCT/organ transplant
- Average incubation period approx 40 days;
- Symptoms last on average 1-4 weeks then clearance;
 - Some asymptomatic
 - Mild non-specific illness (fatigue, fever, nausea/vomiting)
 - Derangement in liver enzymes and jaundice
 - Care: in SCT setting, can be mistaken for GVHD (if ↑ steroids, HEV worsens; treatment is ↓IS +/- add ribavirin)

Hepatitis E – if not cleared

- Immunocompetent patients usually able to clear the virus
- In immunosuppressed patients, eg: undergoing SCT or SOT transplants, HEV is more difficult to clear
 - Can lead to chronic changes including chronic inflammation & potential to develop cirrhosis in 3-5 years

Hepatitis E virus in blood components: a prevalence transmission study in southeast England (Lancet, July 2014; 384: 1766-73.)

- NHSBT and PHE: Prospective study monitoring hepatitis E detection in 225,000 donations between Oct 2012 Sept13
- Objectives:
 - Prevalence of HEV RNA in blood donations
 - Outcomes of those patients infected via transfusion
 - (blood testing not at time of blood issue, but afterwards)
- Results: Prevalence in blood donations:
 - 79 /225 000 donations were HEV RNA pos
 - = Prevalence 1 in 2848 blood donations
 - Most samples were genotyped: all type 3

NHS Blood and Transplant

Results: Outcome of patients -

	Blood components associated with HEV-viraemic donation	Blood components recalled or discarded	Blood components transfused
Red blood cells	71	48 (68%)	23 (32%)
Pooled platelets	15	3 (20%)	12 (80%)
Apheresis platelets	24	1(4%)	23 (96%)
Fresh frozen plasma	12	9 (75%)	3 (25%)
Cryoprecipitate	6	6 (100%)	0
Pooled granulocytes	1	0	1 (100%)
Total	129	67 (52%)	62 (48%)

Table 1: Blood components associated with viraemic donations

Further analysis of outcome of 18 patients who received components from a viraemic donor indicated that in the highly immunosuppressed, the virus took a long time to clear

	Recipients of blood components	Infected recipients	Uninfected recipients
Red blood cells	16	4 (25%)	12 (75%)
Pooled platelets	10	4 (40%)	6 (60%)
Apheresis platelets	14	7 (50%)	7 (50%)
Fresh frozen plasma	2	2 (100%)	0
Pooled granulocytes	1	1 (100%)	0
Total	43	18 (42%)	25 (58%)

Table 2: Association between transfused blood components and transmission of hepatitis E virus in 43 of 60 exposed patients in whom follow-up was possible

Lancet Paper: Conclusions

- HEV genotype 3 infections widespread in English population and in blood donors (higher in parts of Europe)
- Transfusion-transmitted infection varies by component (greater transmission by plasma & platelets than red cells); rarely causes acute morbidity; but some immunosuppressed patients, infection is persistent (potential cirrhosis in 3-5 yrs)

Dietary Considerations:

- Strong association between genotype 3 and pork/pork products (pork pies, sausages, ham)
- Is the risk of transmission from food higher than that of transmission via blood components or transplant?

GIVENS Donor annual seroconversion rate 0.2% 60 donor exposures two years after procedure

NHS

Blood and Transplant

SaBTO Recommendations

• Advisory Committee for Safety of Blood, Tissues & Organs – Aug15.

Key Recommendations:

- Introduce testing to provide hepatitis E neg components for patients having solid organ or allogeneic SCT (timings – later)
- Provide dietary advice to allogeneic SCT and SOT patients regarding risk of eating poorly-cooked pork or pork products.
- Screen patients for HEV PCR (3 monthly) for dietary acquisition

Other groups:

- NHSBT also provides HEV neg components for neonates
- No evidence at present for HEV neg components in pregnancy
- Current assessment re: patients with chronic liver disease, haemoglobinopathies and other immunocompromised patients

What does that mean?

NHSBT started supplying HEV neg components from 14/03/2016.
Clinical indications for hepatitis E negative components?

1. Haematopoietic Stem Cell Transplantation:

Allogeneic SCT: definite or potential/likely allogeneic SCT recipients:

- from 3 months prior to planned SCT (time of diagnosis for acute leukaemias or AA);
- to 6 months post-SCT, or for as long as patient is immunosuppressed.

Autologous SCT: at present, no convincing evidence to support HEVcomponents for autologous SCT. SaBTO to review in 6 -12 months, on basis of data collected by BSBMT on patients having autologous SCT, acquiring HEV infection.

2. Solid Organ Transplantation

- 1. All post-SOT recipients, as taking immunosuppressive medication (for life).
- 2. Potential SOT recipients:
 - From 3 months prior to date of planned (live donor) SOT, or
 - From date of listing for cadaveric SOT, so that any HEV infection may be cleared *before* transplant.
- 3. Any potential SOT recipient on IS therapy before SOT.
- 4. Extra corporeal procedures: HEV- blood components should be used for dialysis or extra-corporeal circulatory support - in those patients undergoing SOT / SOT patients receiving immunosuppressive medication (before or after).

SaBTO will revisit HEV neg components decision in 2018

Example: How to order HEV- components

 Yellow Form for Haematology patients: updated special requirements list, with HEV tickbox and reason;

a. New patients: decide if likely for allogeneic SCT? If so:

- if acute leukaemia / AA from diagnosis;
- Others from 3/12 pre-SCT;
- b. Existing patients: all will need updated form; decide as above;
- If patients change eg: no longer suitable for transplant (whatever reason) – let Tx Lab know (& change form); conserve HEV- supply & cost.
- If ever acute need & can't get HEV- supply, then balance of risks – d/w Haematology StR/Consultant.

Practical Issues:

- HEV- and CMV- components:
 - Rare patient needs both!
 - 1. CMV- only in pregnant women, non-emergency situation (not post-partum: baby is out);
 - (neonatal components are CMV- HEV- already).
 - 2. Unless hospital has not changed CMV- policy / shared care with such hospital (1 case where referring hospital thought that, but no longer true)
 - Keep separate stock: **red cells**:
 - 2x O-CMV- & 2x A-CMV- blood (rarely needed, sometimes not used before eventually use in "ordinary" patients).
 Usually 2 x MOH/week.

HEV- stock: red cells

- HEV- red cells: most ordered for next delivery for specific patients (irradiated when indicated); 2x deliveries per day.
- With red cells, can order "exact blood" in advance for "patients on the go" as shelf life allows usage later in week.
- Stock: breakdown of stock with special requirements (other than CMV-):
 - $-\frac{1}{2}$ O+ irradiated; $\frac{1}{2}$ HEV-
 - -1/4 A+ irradiated; all HEV-
 - $-\frac{1}{4}$ (O- & A-) irradiated; not HEV-
- If stock all HEV-CMV- & regularly re-ordered (eg: because use in patients who only needed HEV-): huge cost & supply problems: >> than SABTO balance of cost-benefit to NHS.

Platelets:

Stock all A- CMV- HEV- +/- irradiated on daily basis! Unsustainable.

- 1. Keep separate CMV- stock, if really need: not needed in pregnant women in emergency (SABTO);
- 2. HEV-.....does it really all have to be A-?
 - We stock most as A+ as:
 - 80% of recipients will be D+ anyway;
 - $\frac{1}{2}$ of the D- will be male/post-menopausal females;
 - if female of childbearing age, we give anti-D (SC if necessary);
 - (40% patients will be group O.....)
- A- platelets exponential demand means excess A- red cells as result: some hospitals won't accept substitute for A+, as precludes EI!
- <u>Options:</u>
 - Either waste (huge cost to NHS)! Or hospitals use in patients not suitable for EI (Abs; SCT etc); or stop over-ordering A- platelets.

Platelets stock:

 most ordered for next delivery for specific patients (irradiated or HEV- when indicated);

• Stock:

- CMV-
- HEV-
- Irradiated, non-HEV-
- No requirements

- nil;
- 1x A+ irradiated, HEV-
- 2x A+; 1x A-; 1x O+(HT-);
- 1x A+; 1x B+

Conclusion:

- Everywhere different: review requirements & where actually go
- In emergency, accept components unscreened for HEV: likelihood HEV viraemic & transmission; dietary risk in parallel & screening for HEV; treatable. MHRA aware of this rationale, as discussed before HEV screening started.