Haemolytic Disease of the Newborn HDN 19th June 2014 Dr Susan Rubin

Objectives

- Rhesus hemolytic disease of the newborn
- Aetiology and effect on the fetus and newborn
- Severity of disease
- Prevention
- Rh immune globulin
- Tests for feto-maternal hemorrhage
- Treatment
 - Inutero
 - Exutero
- Other causes of HDN
- New developments

Rhesus Haemolytic Disease of the Newborn

- Used to be a major cause of fetal loss and death in newborn infants
- HDN was ?first described in 1609 by a midwife who delivered twins
 - One baby was swollen and died soon after birth
 - The twin became jaundiced and died several days later
- Many similar cases were described over the following 300 years

Rhesus HDN

- Disorder of the fetus or newborn where fetal red cells are destroyed by maternal IgG antibodies
- The IgG antibodies cross the placenta and shorten red cell survival
- The premature red cell destruction results in disease varying from mild anaemia to death in utero

Aetiology in the Fetus

- The mother is exposed during her first pregnancy
- In subsequent pregnancies the IgG antibodies cross the placenta
- The antibodies bind to the antigens on the fetal red cells destroying the cells and releasing haemoglobin
- This results in anaemia which if severe leads to fetal death

Aetiology in the Newborn

- After delivery red cell destruction continues
- Haemoglobin is broken down
- Newborn liver is immature and is unable to produce enough glucuronyl transferase to convert unconjugated (indirect) to conjugated (direct) bilirubin
- High levels of unconjugated bilirubin are neurotoxic

Bilirubin physiology

- Bilirubin derived from breakdown of haem proteins which are present in Haemoglobin
- Bilirubin is bound to albumin for transport in the blood (bound bilirubin is non toxic)
- In the liver bilirubin enters the liver cell is bound to ligandin to help transport to the site of conjugation
- Bilirubin conjugates with glucuronic acid which produces a water soluble compound

- Conjugated bilirubin is transported to the gut in bile
- Newborn baby's guts contain an enzyme B glucuronidase which converts the conjugated bilirubin to unconjugated which is then reabsorbed into the circulation

Bilirubin Metabolism AMINO RBC RBC ACIDS HEME + Globin DAMAGE RBC (Heme Oxygenase) ----BILIVERDIN (Bilveridin LIVER reductase) UPTAKE ALBUMIN BOUND UNCONJUGATED UNBOUND BILIRUBIN BRAIN LIPID SOLUBLE

Rh HDN

- Anti D is responsible for the most severe cases of HD of the fetus and newborn
- Alloimmunisation occurs during first pregnancy in a Rhesus D positive mother carrying a Rhesus D negative fetus
- This rarely resulted in clinical symptoms
- Subsequent pregnancies where fetus was Rh
 D+ are affected

Rh Immune Globulin

- Introduced in 1968
- Dramatic reduction of the incidence of Rh haemolytic disease .

When to give antiD lgG

- Need to prevent Rh neg women becoming sensitised.
- During pregnancy and after if baby is Rh +
- Following miscarriage or threatened miscarriage, ectopic pregnancy and termination
- Invasive prenatal diagnosis eg amniocentesis
- External cephalic version
- Abdominal trauma
- Fetal death

Routine Antenatal Prophylaxis

- All non sensitised Rh D negative women
- One larger dose or 2 smaller doses
- Routine antibody screening test at 28 weeks must be taken before Anti -D Ig prophylaxis is given

Postnatal Prophylaxis for the Mother

- Anti-D Ig prophylaxis should be given within 72 hours if the baby is Rh D +
- A blood test from the mother is required to estimate the amount of fetal blood in the maternal circulation.
- If estimated greater than 4 ml additional anti-D will be required to prevent sensitisation.

Kleihauer Test

- Used to measure the amount of fetal Hb transferred from the fetus into the maternal circulation
- It is performed in Rh negative mothers
- It quantifies the amount of blood that has crossed into the maternal blood stream
- It uses the fact that fetal Hb is resistant to acid

Sir William Liley 1929-1983

- First introduced concept of intrauterine transfusion
- He heard that red cells transfused into the peritoneum of children with sickle cell disease appeared to migrate into the circulation and correct the anaemia

Inutero treatment

- Intrauterine transfusion of fetal RBCs
- Choice of access (no comparison RCT)
 - Peritoneal cavity
 - Intravascular transfusion
 - Umbilical cord vein
 - Intrahepatic umbilical vein
- Combined approach

Neonatal Management

- Cord bloods for Hb, DAT and bilirubin
- Phototherapy
 - Blue light spectrum 420-475 nm
 - Sngle, double or triple
- Exchange transfusion
 - Irradiated leucodepleted QMV negative blood
- Follow up
 - Top up transfusion
 - Folic acid replacement

Threshold table

Consensus-based bilirubin thresholds for management of babies 38 weeks or more gestational age with hyperbilirubinaemia

Age (hours)	Bilirubin measurement (micromol/litre)			
0	-	-	> 100	> 100
6	> 100	> 112	> 125	> 150
12	> 100	> 125	> 150	> 200
18	> 100	> 137	> 175	> 250
24	> 100	> 150	> 200	> 300
30	> 112	> 162	> 212	> 350
36	> 125	> 175	> 225	> 400
42	> 137	> 187	> 237	> 450
48	> 150	> 200	> 250	> 450
54	> 162	> 212	> 262	> 450
60	> 175	> 225	> 275	> 450
66	> 187	> 237	> 287	> 450
72	> 200	> 250	> 300	> 450
78	-	> 262	> 312	> 450
84	_	> 275	> 325	> 450
90	_	> 287	> 337	> 450
96+	-	> 300	> 350	> 450
	\downarrow		\downarrow	\downarrow
Action	Repeat bilirubin measurement in 6–12 hours	Consider phototherapy and repeat bilirubin measurement in 6 hours	Start phototherapy	Perform an exchange transfusion unless the bilirubin level falls below threshold while the treatment is being prepared

Bilirubinometer

Phototherapy

- Phototherapy converts bilirubin into lumirubin via structural isomerization that is not reversible.
- Lumirubin, a more soluble substance than bilirubin, is excreted without conjugation into bile and urine.
- This is the principal mechanism by which phototherapy reduces bilirubin concentration.

Effectiveness of Phototherapy depends on

- Spectral quantities of delivered light (optimal wavelength range 400-520nm with peak emissions at 460nm)
- Irradiance (intensity of light)
- Surface area deceiving phototherapy
- Skin pigmentation
- Total SBR at start of phototherapy
- Duration of exposure

Traditional Guidelines for Exchange Transfusion

- Severe anaemia Hb<100mg/dl at birth
- Severe hyperbilirubinaemia SBR>350 micromols in the first 48 hours
- These values are from the era when managing the sick neonate with untreated RhD disease

Exchange transfusion

Risks

- Blood borne infections
- Thrombocytopenia and coagulopathy
- Graft vs Host disease
- NEC
- Portal vein thrombosis
- Bectrolyte abnormalities
- Cardiac arrhythmias

Intravenous Immunoglobulins

- Studies have shown the use of IVIG reduces the need for exchange transfusion.
- Avoiding exchange transfusion reduces potential risks of adverse side effects
- Mechanism is uncertain. Possibly IVIG inhibits haemolysis by blocking antibody receptors on the RBCs

Other types of HDN which can be predicted by screening

- Any Ig G antibody is capable of causing HDN if the fetal red cells possesses an antigen that the mother lacks.
- Anti-cis the next most commom
- Other common causes include anti Kell and anti M

Anti Kell Antibodies

- Particularly difficult to manage
- Severity of HDN can change within a week
- Antibody supresses erythropoiesis as well as causing haemolysis
- Accounts for 10% of severely affect fetuses

Causes of HDN presenting as early onset or rapidly progressive hyperbilirubinaemia which will not be predicted by maternal antibody screening

- ABO incompatability
- Red blood cell membrane defects (eg congenital spherocytosis)
- Red blood cell enzyme defects (eg G6PD deficiency)

ABO incompatability

- More common than Rh disease
- Most cases are very mild and require no treatment
- If jaundice develops only treatment required is phototherapy
- Mothers are usually Group O and babies Group A or B
- This can affect first pregnancy

Congenital Spherocytosis

- Most common red cell membrane defect
- Occurs 1 in 5000 live births in parents of northern European extraction
- Presents in neonate with unconjugated
 hyperbilirubinaemia
- Inherited as autosomal dominant trait with 25% new mutation

G6PD Deficiency

- Seen in all ethnic groups
- More common in people from central Africa (20%)
- Mediterranean (10%)
- Often presents in first few days of life with severe hyperbilirubinaemia and a completely normal blood film
- Diagnosis made by assaying G6PD in peripheral blood
- Counsel parents on what chemicals and foods may precipitate haemolysis.

Follow Up

- Folic acid and iron replacement
- Careful planned Fu tailored to the baby

Free Fetal DNA

- This an exciting new technique
- Can be used for prenatal diagnosis in a number of fetal conditions
- Particularly identifying blood groups of the fetus. If the fetus is Rh-ve then the pregnancy can be managed as a low risk

Any Question ?

