Gap Analysis and Risk Assessment

Edwin Lindsay
Principal Consultant

Compliance Solutions (Life Sciences) Ltd,

Tel: + 44 (0) 7917134922
E-Mail: elindsay@blueyonder.co.uk
Imagine!

- There were no guidelines/regulations
- There was no training
- No Procedures
- No Inspectors
The aftermath

• Inform All staff of the outcome
Most Common Deadly Sins of Non-Compliance

- Inadequate Change Control
- Inadequate Validation
- Inadequate follow-up
- Repeat violations
- Inadequate Training
- Inadequate/Deficient controls
Most Common Deadly Sins of Non-Compliance

- Inadequate Failure Investigations (Non Conformances and CAPA)
- Failure to Follow Procedures
- Inadequate Internal Audits
- Inadequately staffed Quality departments
Deficiencies occur / mistakes happen

Key is to have systems in place that:

- Investigates root causes
- Assures complete and systematic correction
- Documents and validates changes
What does all this mean to me?

- Document all actions
- Follow instructions carefully
- Take time to do it right first time
- Don’t take Short-cuts
- Use equipment correctly
- Take training serious
- Admit errors & mistakes

PERSONNEL
You, Me, Everyone

Compliance Solutions (Life Sciences) Ltd
What Is a Gap Analysis?

- A way to compare current conditions and practices in order to identify gaps and areas in need of improvement with regards to compliance to the relevant standards

- Formal means to identify and correct gaps between desired levels and actual levels of performance

- Used by organizations to analyze certain processes of any division of their company
Developing An Improvement Plan

1. Assess current situation
2. Determine priorities based on strategy & Best Practices
3. Develop a plan to close gap

Current System and Practices
What the weaknesses are

GAP

Best Practices
What's possible

Business Strategy (Strategic Levers)
What's important

Compliance Solutions (Life Sciences) Ltd
Gap analysis

Methodology

• What type of information?
• Who will collect information?
• Where from?
• How will the information be collated?
• Where will it be stored?
• Who will evaluate and analysed?
• How will information be disseminated?
• Who will disseminate?
Gap Analysis Tool

- Phase 1: Identify Gaps
- Phase 2: Fill Gaps
Gap Analysis Tool

Identify Gaps:

- Make a list of requirements, this is usually in the form of questions.
- Review of all current practices, written or otherwise
- Review for

1. Adequacy
2. Suitability
3. Effectiveness
4. Compliance
Gap Analysis Tool

Identify Gaps:

• Three answers are possible for each question:
 – **Yes** – organization has met one of requirements
 – **No** – points to a gap
 – **N/A** – question is not applicable to situation
Gap Analysis Tool

Identify Gaps:

- Each time “NO” is answered, there is a column to help organization identify which processes need to be fixed
 - Quality Management Process
 - Internal Communications Process
 - Document Control Process
 - Record Keeping Process
 - Training Process
 - Internal Audit Process
 - Management Review Process
 - Measuring and Monitoring Process
 - Nonconformance Management Process
 - Continual Improvement Process

Compliance Solutions (Life Sciences) Ltd
Gap Analysis Tool

Fill Gaps:

- The Gap Analysis questions are turned into action statements
- These action statements formulate remedial actions which will fill in the gaps
- Develop plans to address the gaps
- These remedial actions are used to fill the gaps that are found
- All remedial actions must be assigned a Remedial Action Number
- Job responsibilities are then given out to make sure that the remedial actions are carried out
Developing The Action Plan

1. Identify performance gaps relative to categories

2. Identify strategy gaps and associated practices

3. Examine individual practices with low performance & high importance in large gap categories & strategies

4. Look for logical relationships & precedence among practices

5. Develop the action plan & gain consensus to the plan
How to effectively approach the project?

- Steering committee and task force
- Diagnosis of an existing system
- Execution plan
- Training
- Planning, Documenting
- Implementation
- Audits and review
- Possible changes
Planning

- Prioritize development projects
- Don’t overload resources
- Rapidly staff the project according to plan
- Capture and document requirements and specifications completely
- Tightly manage requirements
- Plan concurrent development
- Learn to work with partial information
- Plan and coordinate requirements
- Resolve problems quickly
- Create a comprehensive, realistic project plan
Planning

- Obtain personnel's commitment to the project plan
- Communicate project plans and responsibilities
- Identify project staffing requirements
- Plan development resource requirements
- Allocate and manage resources
- Standardize where possible
- All review the plan on a regular basis
Summary of Gap Analysis

- Gaps can be found in any process of an organization’s operations.

- Gap Analysis is one of the best procedures to help lead an organization to not only improve their processes, but recognize which processes are in need of improvement.
What is Risk?

The danger or probability of loss/error.
What is Risk Management?

“The culture, processes and structures that are directed towards the realization of potential opportunities and the effective management of adverse effects”
What is risk?

Many Definitions:

- It is widely accepted that the concept of risk has two components – Chance & Consequences:
 - How likely is the scenario to happen?
 - If it does happen, what are the consequences?

Key Considerations:

- The probability of occurrence of harm, (chance, possibility, uncertainty, etc.)
- The consequences or severity of that harm, (injury, cost, supply issues, etc.)

Compliance Solutions (Life Sciences) Ltd
Risk Assessment……

- How do we reduce the chance of errors occurring?

- Examination of process and develop safety barriers to minimise chance of error.

- Understand why risk needs to be managed and what the risk is.

- Understand where risk comes from and how people process information

Compliance Solutions (Life Sciences) Ltd
Recognition in Risk

start by identifying what may happen
Risk Prioritisation

Risk Analysis

identify causes and consequences

= Risk Measures (Barriers)
 - Safety Related Systems: IT
 - Safety Systems: Other Technologies
 - External Risk Reduction Measures

Event

Start putting barriers in place

Causes and Contributory Factors
Consequences

Risk Prioritisation

identify causes and consequences start putting barriers in place

Risk Analysis

= Risk Measures (Barriers)
 - Safety Related Systems: IT,
 - Safety Systems: Other Technologies
 - External Risk Reduction Measures
Risk Management

Risk Analysis

= Risk Measures (Barriers)
 - Safety Related Systems: IT
 - Safety Systems: Other Technologies
 - External Risk Reduction Measures

Causes and Contributory Factors

Consequences

as you go on, add more barriers
Risk Management Activities

Risk Analysis

Causes and Contributory Factors
Consequences

Risk Management Activities
Processes, procedures to maintain and verify that risk measures are in place and effective

= Risk Measures (Barriers)
- Safety Related Systems: IT
- Safety Systems: Other Technologies
- External Risk Reduction Measures

constantly ensure barriers are maintained
Risk Management Activities

Risk Management System

Risk Analysis

Causes and Contributory Factors

Consequences

Risk Management Activities
Processes, procedures to maintain and verify that risk measures are in place and effective

= Risk Measures (Barriers)
- Safety Related Systems: IT
- Safety Systems: Other Technologies
- External Risk Reduction Measures
A Risk Definition

- Risk is the combination of the probability of occurrence of harm and the severity of that harm
 - Risk = Probability x Severity
 - Risk = (P x S)

- Risk can be Quantified or Qualified
 - Risk = (4 x 3) = 12
 - Risk = (Moderate x Major) = Unacceptable
What about Detection?

• Are Detection Controls not taken into account?

• Is Risk Not (Probability x Severity x Detection)?
 – Risk Priority Number (P x S x D) often used, especially in FMEA, FMECA
 – Advantage – simple concept, easy to use and understand

Comment

• There is much confusion about where to consider detection controls during Risk Assessment....
Probability of Occurrence Levels

<table>
<thead>
<tr>
<th>Probability</th>
<th>This Means The Failure Mode…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent</td>
<td>… is Very Likely to Occur, > 20%</td>
</tr>
<tr>
<td>Probable</td>
<td>… will Probably Occur, 5 – 20%</td>
</tr>
<tr>
<td>Occasional</td>
<td>… should Occur at Some Time, Infrequently, 0.1 – 5%</td>
</tr>
<tr>
<td>Remote</td>
<td>… Unlikely to Occur in Most Circumstances < 0.1%</td>
</tr>
</tbody>
</table>

Note: These levels are arbitrary and for illustrative purposes only
Severity Levels

<table>
<thead>
<tr>
<th>Severity</th>
<th>This Means the Failure Mode May Result in….</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td>Very Significant Non-Compliance with GMP or Patient Injury</td>
</tr>
<tr>
<td>Major</td>
<td>Significant Non-Compliance with GMP or Patient Impact</td>
</tr>
<tr>
<td>Minor</td>
<td>Minor Infringement of GMP No expected Patient Impact</td>
</tr>
</tbody>
</table>

Note: These levels are arbitrary and for illustrative purposes only
<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Minor Severity</th>
<th>Major Severity</th>
<th>Critical Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent</td>
<td>Orange</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Probable</td>
<td>Orange</td>
<td>Orange</td>
<td>Red</td>
</tr>
<tr>
<td>Occasional</td>
<td>Green</td>
<td>Orange</td>
<td>Orange</td>
</tr>
<tr>
<td>Remote</td>
<td>Green</td>
<td>Yellow</td>
<td>Orange</td>
</tr>
</tbody>
</table>

Note: These criteria are arbitrary and for illustrative purposes only
<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Minor Severity</th>
<th>Major Severity</th>
<th>Critical Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent</td>
<td>Unacceptable</td>
<td>Intolerable</td>
<td>Intolerable</td>
</tr>
<tr>
<td>Probable</td>
<td>Unacceptable</td>
<td>Unacceptable</td>
<td>Intolerable</td>
</tr>
<tr>
<td>Occasional</td>
<td>Acceptable</td>
<td>Unacceptable</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Remote</td>
<td>Acceptable</td>
<td>Acceptable</td>
<td>Unacceptable</td>
</tr>
</tbody>
</table>

Compliance Solutions (Life Sciences) Ltd
Acceptance Criteria Notes

- **Red Means…**
 - The Risk is Intolerable. Eliminate the Hazard or build in systems/controls to ensure the effects of the hazard are not realised (e.g. redundant systems)

- **Amber Means…**
 - The Risk is Unacceptable. The Risk must be Reduced or Controlled to an acceptable level

- **Green Means…**
 - The Risk is Acceptable. No Reduction or New Controls are Required
Detection Levels

<table>
<thead>
<tr>
<th>Detection</th>
<th>This Means….</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High Likelihood that Controls will Detect the Failure Mode or its Effects</td>
</tr>
<tr>
<td>Medium</td>
<td>Medium Likelihood that Controls will Detect the Failure Mode or its Effects</td>
</tr>
<tr>
<td>Low</td>
<td>Low Likelihood that Controls will Detect the Failure Mode or its Effects</td>
</tr>
<tr>
<td>None</td>
<td>Detection Controls are Absent</td>
</tr>
</tbody>
</table>

Note: These levels are arbitrary and for illustrative purposes only
What is FMECA?
Failure Mode, Effects & Criticality Analysis

• A Risk Assessment tool based around Failure Modes

• (A Failure Mode is a way in which a process can fail to provide the anticipated result)

FMECA...

• Identifies potential Failure Modes in a system, facility, process or product
• Prioritises the Failure Modes in accordance with their risk
• Puts controls in place to address the most serious concerns
Human Factors

• However, around 80% of accidents are attributable to human factors

• What are the contributing factors in the images in the next two slides?
What Caused the Problem

- Is it the donkey’s fault?
- Is there something wrong with the design of the cart?
What Caused the Problem

• Is this a problem caused by the design of the plane?
• Why did this happen when this is something these people do many times everyday?
Some General Considerations for Risk Assessment and Risk Management

Start Early!

- It is more difficult and more costly to make changes to a process, facility, system or product after the fact than early on.

Map the Process…. and do this well.

- A well mapped process is usually a major advantage when doing Risk Assessment work.
- This is also a prerequisite of most Risk Assessment tools, eg FMEA,
On-going?

- Risk Management should be viewed as an on-going Quality Management process
What’s in a Name?

Many of us do Risk Assessment & Risk Management without calling it this…

- Warehouse Temperature Mapping is a form of Risk Assessment
- Change Control is a Risk Management tool to a degree
- A Company Validation Master Plan is a form of Risk Management
- Self-Inspection Programme is a component of Risk Assessment
What to expect during Inspections

- Inspectors may ask to see evidence of how Risk Assessment was used when determining what qualification & validation work was carried out on a certain process, piece of equipment, etc.

- Inspectors may ask to see evidence of how Risk Assessment was used when designing qualification & validation protocols, and in Change Controls.

- Inspectors will not require any specific Risk Assessment tool to have been used.

- We will look for evidence that hazards were adequately identified and that risks were adequately assessed & managed.

- We will ask to see how risk acceptability criteria were chosen.
In Summary......