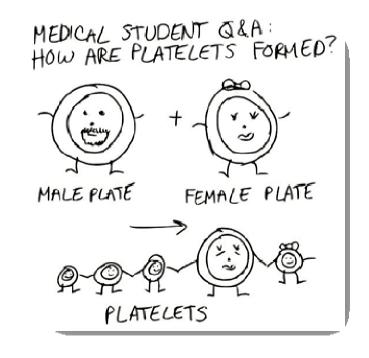
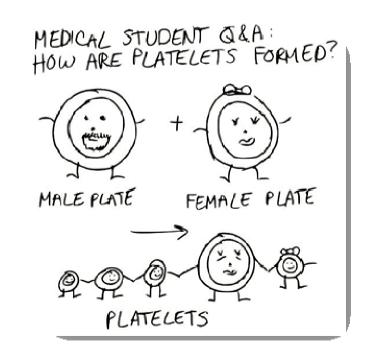
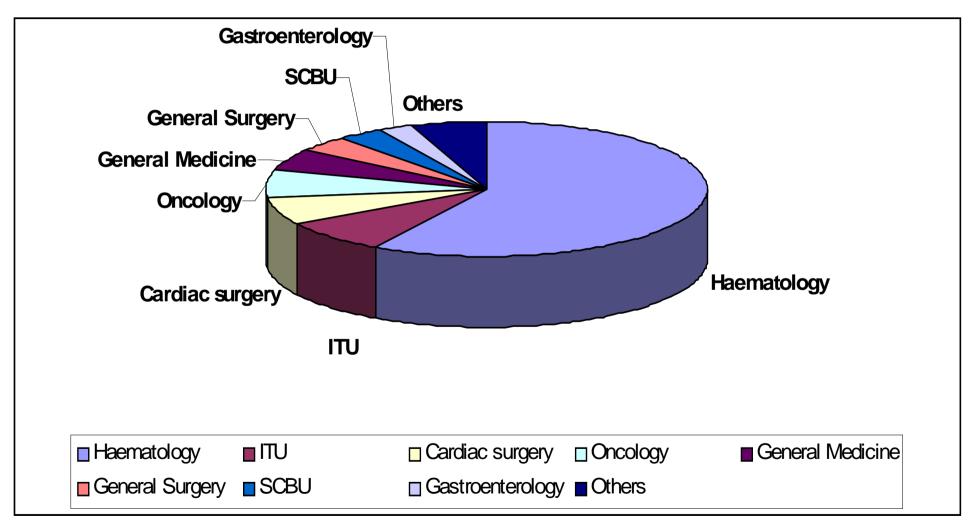
Platelet Transfusion Guidelines

Lise J. Estcourt




Today's topics

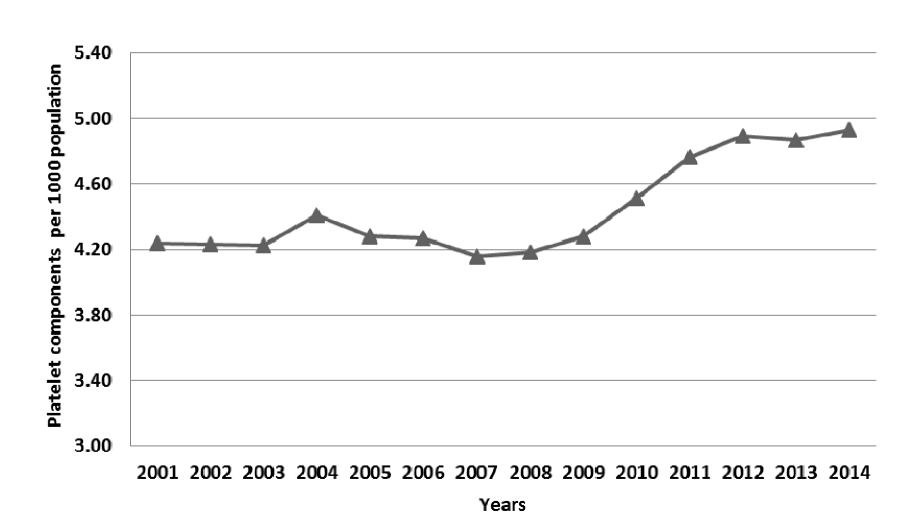
- Prophylaxis
 - Therapeutic versus prophylactic
 - Platelet threshold
 - Platelet dose
- Pre-procedure
- Therapeutic
 - Antiplatelet agents



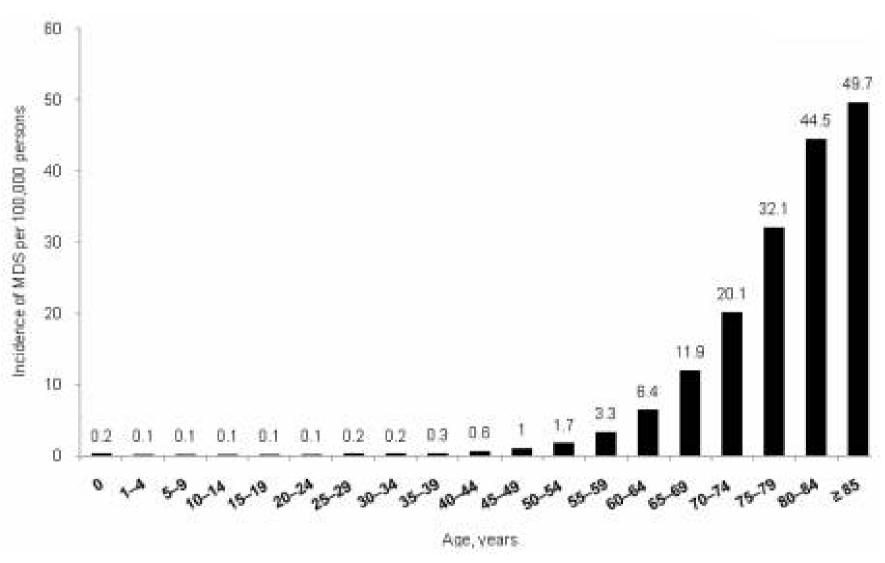
Today's topics

- Prophylaxis
 - Therapeutic versus prophylactic
 - Platelet threshold
 - Platelet dose
- Pre-procedure
 - Central line
 - Bone marrow
- Therapeutic
 - Anti-platelet agents

Haematology patients use the majority of platelet transfusions

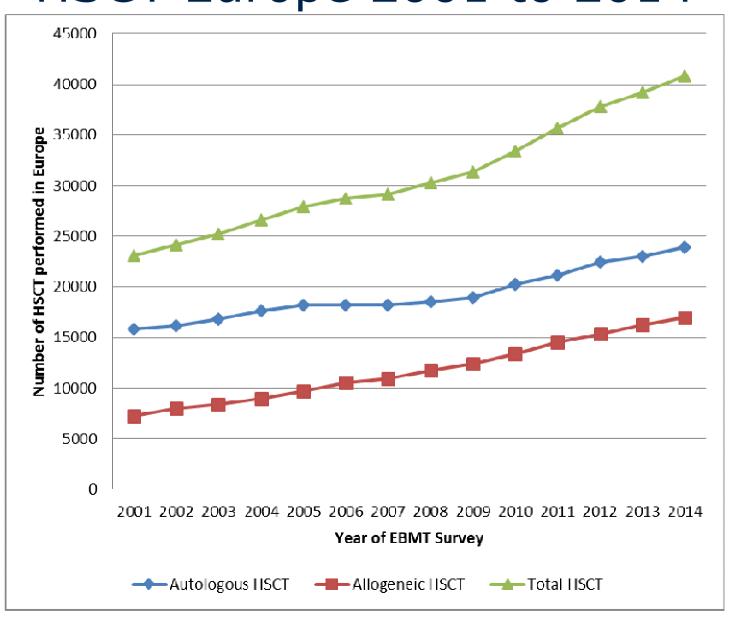


Data from NW England & Wales Audit of platelet use and wastage. Pendry & Davies 2011. Blood and Transplant Matters.


Majority of platelet transfusions are prophylactic

Reason for Transfusion	Audited episodes in each category	Appropriate	Indeterminate	Outside guidelines
Prophylactic	77%	55%	8%	37%
Pre - procedure	9%	61%	20%	19%
Therapeutic	10%	87%	7%	6%
Unclear	4%	0%	100%	0%

Platelet component demand



Incidence of MDS

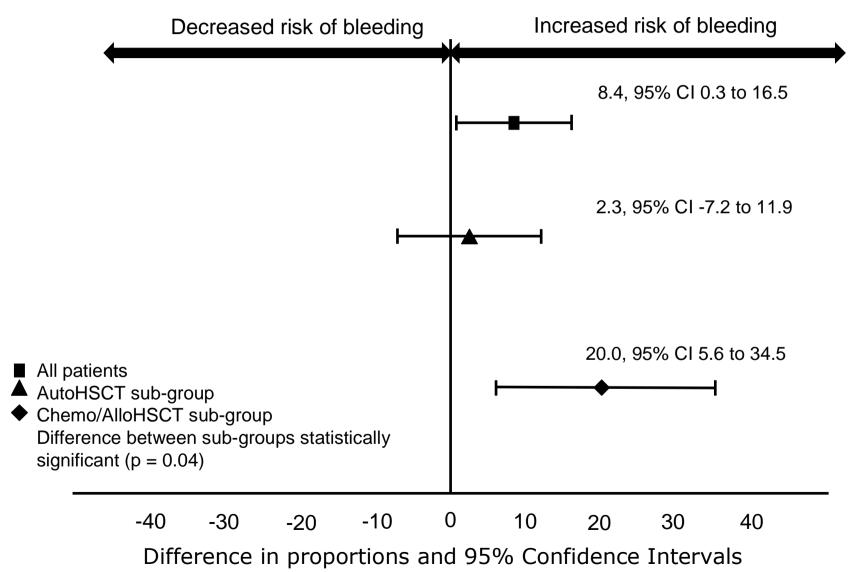
Ma et al, 2012 Am J Med;125(7 Suppl):S2-S5

HSCT Europe 2001 to 2014

Avoid unnecessary usage

- Risks to the patient
 - Safest transfusion is the one not given because it is not needed
- Costs to the health service

Preservation of national blood supply


Prophylactic Platelet transfusions

	German Study	(Wandt 2012)	TOPPS (Star	worth 2013)
	Prophylaxis	No Prophylaxis	Prophylaxis	No Prophylaxis
Number of Patients	194	197	298	300
Autologous SCT	98 (29%)	103 (34%)	210 (70%)	210 (70%)
Clinically significant bleeding	19%	42%	43% (128/298)	50% (151/300)
Severe or life- threatening bleeding	2% (7/343 Rx cycles)	6% (21/301 Rx cycles)	0.3% (1/298)	2% (6/300)

Wandt *et al.* Therapeutic platelet transfusion versus routine prophylactic transfusion in patients with haematological malignancies: an open-label, multicentre, randomised study. *Lancet 2012.*

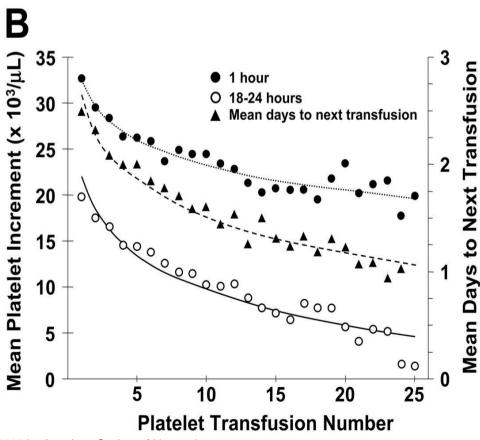
Stanworth et al. A no-prophylaxis platelet transfusion strategy for hematologic malignancies. NEJM 2013

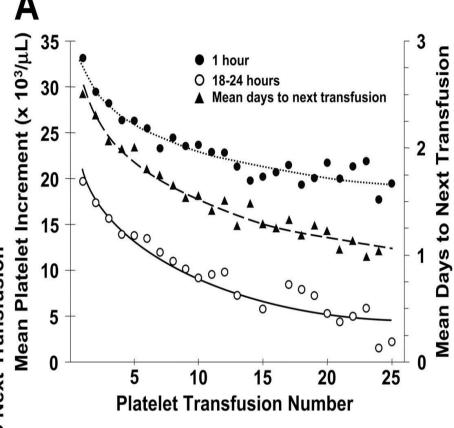
Variability in effectiveness of prophylactic platelet transfusions

	Number of patients needed to be treated with prophylactic platelet transfusions to prevent 1 patient from WHO grade 2 or above bleeding within a 30 day period						
	NNTB	95% CI					
All patients	12	6 to 333					
Autologous HSCT	43	Not estimable					
Chemotherapy/ Allogeneic HSCT	5	3 to 18					

Stanworth et al. A no-prophylaxis platelet transfusion strategy for hematologic malignancies. NEJM 2013

	Standard tri	gger	Higher tri	igger		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI
1.1.1 Platelet thresho	ld < 10 vs. < 2	20					
Heckman 1997	17	37	7	41	14.9%	2.69 [1.26, 5.75]	
Rebulla 1997 Subtotal (95% CI)	29	135 172	24	120 161	57.2% 72.1 %	1.07 [0.66, 1.74] 1.41 [0.95, 2.10]	•
Total events	46		31				
Heterogeneity: Chi ² = 4 Test for overall effect:			; I ² = 75%				
1.1.2 Platelet thresho	ld < 10 vs. < 3	30					
Diedrich 2005 Subtotal (95% CI)	14	79 79	13	87 87	27.9% 27.9%	1.19 [0.59, 2.37] 1.19 [0.59, 2.37]	
Total events	14		13				
Heterogeneity: Not ap Test for overall effect:	'	0.63)					
Total (95% CI)		251		248	100.0%	1.35 [0.95, 1.90]	•
Total events Heterogeneity: Chi² = 4 Test for overall effect: Test for subgroup diffe	Z = 1.69 (P = 0	0.09)).67), l²	= 0%		0.01 0.1 1 10 100 Favours standard trigger Favours higher trigger


BCSH Recommendations


- Give prophylactic platelet transfusions to patients with reversible bone marrow failure receiving intensive chemotherapy or undergoing allogeneic HSCT
- Consider not giving prophylactic platelet transfusions to well patients who have had an autologous stem cell transplant
- Consider increasing the threshold for prophylactic platelet transfusion to between 10 and 20 x10⁹/L in patients judged to have additional risk factors for bleeding. Individual review is required.

What about evidence for other patient groups?

- One RCT in progress in patients with long term bone marrow failure.
- One RCT in 87 patients with dengue haemorrhagic fever.
 - Prophylactic plt Tx not prevent bleeding
 - 3 anaphylactic reactions

Relationship between number of platelet transfusions, platelet increments and days to next transfusion

- 1-hr increment
- 18-24 hr increment
- Days to next transfusion

Slichter S J et al. Blood 2005;105:4106-4114

BCSH Recommendations

- Use a 'no prophylactic platelet transfusion' strategy for asymptomatic patients with chronic bone marrow failure (including those taking low dose oral chemotherapy or azacitidine)
- Give prophylactic platelet transfusions to patients with chronic bone marrow failure receiving intensive treatment
- Use the platelet count thresholds for reversible bone marrow failure as a general guide for other patient groups

Platelet dose

	Low dose	Standard	dose		Risk Ratio	Risk Ratio
Study or Subgroup	Events Tot	al Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Akay 2015	0 4	8 0	52		Not estimable	
Heddle 2009	30 5	8 30	61	9.0%	1.05 [0.74, 1.50]	
Slichter 2010	296 41	7 292	423	89.7%	1.03 [0.94, 1.12]	•
Tinmouth 2004	6 5	6 4	55	1.2%	1.47 [0.44, 4.94]	-
Total (95% CI)	57	9	591	100.0%	1.04 [0.95, 1.13]	•
Total events	332	326				
Heterogeneity: Chi ² = 0	0.36, df = 2 (P =	$= 0.84$); $I^2 = 0$	%			1 1 1 1 1 1
Test for overall effect:	Z = 0.79 (P = 0)	.43)				0.5 0.7 1 1.5 2 Favours low dose Favours standard dose

	Low do	se	High d	ose		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
Slichter 2010	296	417	302	432		1.02 [0.93, 1.11]	+	
							0.5 0.7 1 1.5 2 Favours low dose Favours high dose	

	High dose	Standard	dose		Risk Ratio	Risk Ratio
Study or Subgroup	Events To	al Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Sensebe 2004	3	48 2	48	0.7%	1.50 [0.26, 8.58]	<u></u>
Slichter 2010	302 4	32 292	423	99.3%	1.01 [0.93, 1.11]	
Total (95% CI)	48	30	471	100.0%	1.02 [0.93, 1.11]	•
Total events	305	294				
Heterogeneity: Chi ² =	0.20, df = 1 (P	$= 0.66$); $I^2 = 0$	%			05 07 4 45 2
Test for overall effect:	Z = 0.35 (P = 0.35)).73)				0.5 0.7 1 1.5 2 Favours high dose Favours standard dose

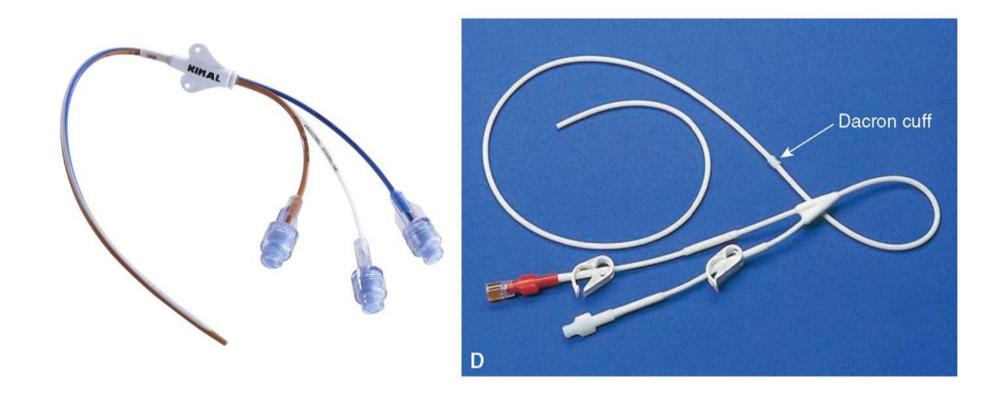
Platelet usage

	Number of Platelet Transfusions/patient	Number of Platelet Components/patient
	Median	Median
Low dose	5 (IQR 3 to 9)	3.9 (IQR 2.0 to 7.5)
Intermediate dose	3 (IQR 2 to 6)	4.7 (IQR 2.9 to 9.5)
High dose	3 (IQR 2 to 6)	8.2 (IQR 4.4 to 15.6)

Platelets Don't use two...

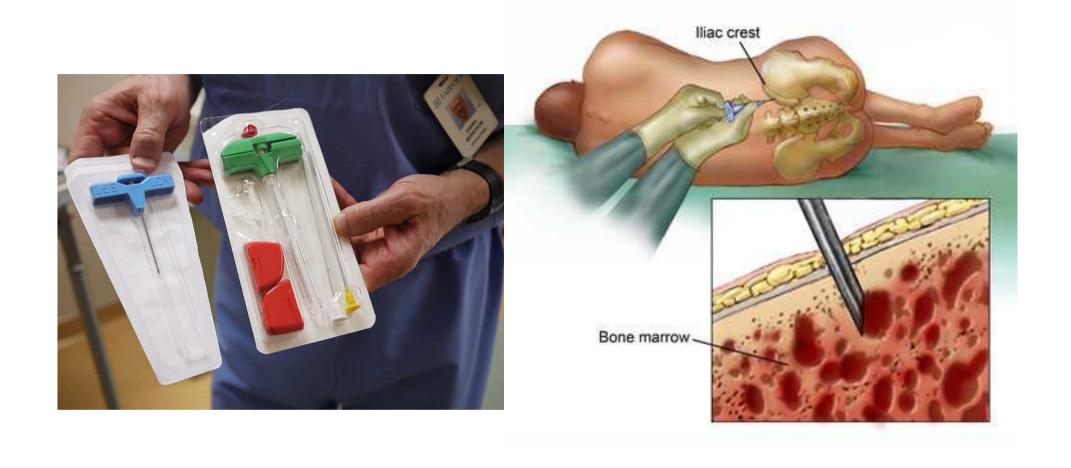
...when one will do

For prophylactic use in a 70kg adult, one adult therapeutic dose (ATD) typically gives an immediate rise in platelet count of


approximately 20 - 40 x 10°/l

Do not administer double dose platelets for prophylactic transfusions as this practice does not decrease the risk of bleeding.

Request and administer one unit/ATD, then reassess your patient.


A platelet increment can be obtained 10 minutes after completion of the transfusion_o

Pre-procedure

Central lines

	Number of procedures (Platelets < 50)	Number of haemorrhages (Platelets < 50)	Number of major haemorrhages
Foster 2010	122	0	0
Haas 2010	344	0	0
Zeidler 2011	173	5	0
Napolitano 2013	39	1	0
Tomoyose 2013	67	4	0
Hong Pheng Loh 2007	22	0	0
Total	767	10 (Approx 1 in 77)	0

Bone Marrows

Year	Number of bone marrows performed	Number of haemorrhages	Number of haemorrhages (plts < 50)	Risk of haemorrhage
2002	13,506	10	3	1 in 1,351
2003	19,259	11	2	1 in 1,751
2004	20,323	9	0	1 in 2,258
2006	15,388	8	1	1 in 1,924
2013	9,295	9	6	1 in 1,033
Total		47	12	

Bain BJ. Bone marrow biopsy morbidity and mortality: 2002 data. Clin Lab Haem 2004;26:315-8.

Bain BJ. Bone marrow biopsy morbidity: review of 2003. J Clin Pathol 2005;58:406-8.

Bain BJ. Morbidity associated with bone marrow aspiration and trephine biopsy - a review of UK data for 2004. Haematologica 2006;91:1293-4.

Devalia V. Annual British Society for Haematology confidential survey of bone marrow examination associated adverse events 2011. Br J Haematol 2013;161:22-3.

BCSH guideline recommendations

 Insertion of venous central lines can be performed by experienced staff using ultrasound guidance techniques when the platelet count is > 20x10⁹/L

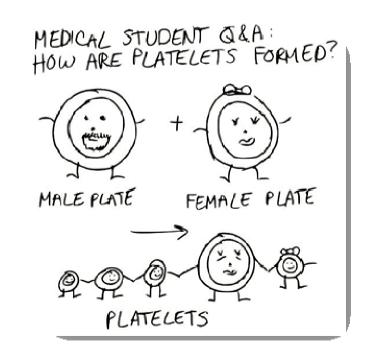
 Platelet transfusions should not be given routinely prior to bone marrow aspirate or trephine biopsy

Therapeutic

Anti-platelet agents

PATCH study

- Randomised people with spontaneous ICH to platelet transfusion or no platelet transfusion
- 60 hospitals (190 participants) Netherlands, UK, and France
- Hypothesis platelet transfusion decreases odds of death or dependence
- odds of death or dependence at 3 months
 - 2.05, 95% CI 1.18 to 3.56
- Serious adverse event
 - 40 (42%) who received platelet transfusion
 - 28 (29%) who received standard care


Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Baharoglu et al. Lancet 2016; online

BCSH guideline recommendations

- Use general haemostatic measures to treat bleeding in patients during treatment with antiplatelet agents. If necessary, consider drug cessation and reversal of the effect of coprescribed anticoagulants.
- Use TXA to counteract the effect of anti-platelet agents when a risk/benefit assessment would support this

Today's topics

- Prophylaxis
 - Therapeutic versus prophylactic
 - Platelet threshold
 - Platelet dose
- Pre-procedure
 - Central line
 - Bone marrow
- Therapeutic
 - Anti-platelet agents

Any questions