“Back to Basics”
Anti D Prophylaxis
Laboratory and Clinical Problems

Stephan Bates
Gloucestershire Hospitals NHS Foundation Trust
Scope

- History
- Immune response
- Rh D Prophylaxis
- Estimation of fetal bleeds
- Problems and common errors
Haemolytic Disease of the Newborn/ Fetus

Is a condition in which the lifespan of the infant’s red cells is shortened by the action of specific antibodies derived from the mother by placental transfer; The disease begins in intrauterine life and may result in death in utero.
Haemolytic Disease of the Newborn

Mother's red cells lack Rh factor

Rh factor on the surface of baby's red cells
During delivery, some of the baby’s red cells may cross the placenta and enter the mother’s circulation. Rh factor on the baby’s red cells stimulates the mother’s immune system to make anti-Rh antibodies. The anti-Rh antibodies attach to the ‘foreign’ red cells and they are destroyed.
If the mother conceives another Rh-positive baby, her anti-Rh antibodies can cross the placenta and enter the baby’s circulation.

The anti-Rh antibodies attach to red cells and some are destroyed...

...leaving free haemoglobin

...which is converted to bilirubin in the baby’s liver

...leading to kernicterus in the newborn baby
Prophylaxis using D immunoglobulin

During delivery, some of the baby’s red cells may cross the placenta and enter the mother’s circulation.

The Prophylactic Anti D must be given within 72 hours of the sensitising event.

Prophylactic Anti D prevents the mother from producing her own D antibodies.
1940 Landsteiner and Weiner discovered the `Rh factor`
1941 Levine et al. tested the antibody described by Landsteiner and Weiner vs. parents of HDN infants

- Mothers were negative for the Rh factor and fathers positive
- Maternal sensitization due to an antigen crossing placenta

1945 Coombs, Mourant and Race proved HDN caused by maternal antibodies crossing the placenta
Primary Anti-D response

- Rarely detected earlier than 4 weeks after sensitisation, but usually 8-9 weeks (up to 15 weeks)
- Weak IgM response, usually followed by IgG.
 - 10-15% ‘non-responders’
 - 10-15% are very good responders
- Initial sensitisation dependent on ‘dose’
 - 15% after 1mL
 - 65-70% after 250mL
Secondary Anti-D response

- A second exposure leads to a rapid rise in anti-D, 3 days onwards.
- Usually IgG (IgG1 and/or IgG3).
- Increased antibody levels and avidity
- Secondary responses require small ‘dose’ (< 0.3mL)
Anti D Prophylaxis

- Clarke's group from Liverpool first described the possibility of prevention using an antibody.

BRITISH MEDICAL JOURNAL 13 APRIL 1974

Controlled Trial of Various Anti-D Dosages in Suppression of Rh Sensitization following Pregnancy

Report to the Medical Research Council by the Working Party on the Use of Anti-D Immunoglobulin for the Prevention of Isoimmunization of Rh-negative Women During Pregnancy
Anti D Prophylaxis

In 1971 and 1974 MRC working party reported on the success of the trials and agreed with WHO guidance of 25 micrograms (125 iu) to be issued to potential bleeds.

Controlled Trial of Various Anti-D Dosages in Suppression of Rh Sensitization following Pregnancy

Anti-D prophylaxis in the UK

1969 post natal anti-D policy introduced

1976 + miscarriages and abortions

1981 + sensitising events in pregnancy

2002 and 2008 NI CE RAADP prophylaxis
Sensitising events

Pregnant women who are D negative must be considered for prophylactic anti-D for the following potentially sensitising events: -

- Amniocentesis
- Cordocentesis
- Other in-utero therapeutic intervention/surgery (e.g. intrauterine transfusion, shunting)
- Ante partum haemorrhage (APH)
- Chorionic villus sampling
- Ectopic pregnancy
- External cephalic version
- Fall / abdominal trauma
- Intrauterine death
- Miscarriage
- Termination of pregnancy
D preparations available

- **Various doses available in UK**
 - 250 iu, 500iu, 1250 iu, 1500 iu, 2500 iu, 5000 iu
 - Standard dose is 125 iu per ml fetal cells bleed IM
 - Minimum dose of 250 iu < 20/40
 - Minimum dose of 500 iu > 20/40 (4 ml FMH)

- Some Anti D IM use only some IV and IM

- The IM Anti D should be given in deltoid region to ensure that it is in muscle and not adipose. Being given in the gluteal region increases this risk
Recurrent bleeds in pregnancy

- < 12 weeks ?? Required
- 12-20 weeks 250 iu every 6 weeks
- > 20 weeks 500 iu every 6 weeks + FMH estimation
Anti-D Sensitisation/1000 Births 1970-86

Year

Total Cases

New Cases

Deaths

Cases/1000 Births

1970 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86

0 1 2 3 4 5 6 7 8 9 10
Approx 500 fetuses/year developed HDN
25-30 babies died from HDN
?? Babies lost before 28/40
Approx 15/year have major permanent development problems

Nice made recommendations to reduce this
Routine A/N prophylaxis to be offered to all non sensitised Rh negative women

To be given at 28 and 34 weeks

1 dose of 1500 iu at 28 weeks is as effective

Any potentially sensitising events need further prophylaxis

NICE reviewed this guidance in 2008
Issues that put the success of prophylaxis at risk
SHOT Data 2005

Anti-D Immunoglobulin (n=87)

<table>
<thead>
<tr>
<th>Type of event</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omission or late administration</td>
<td>27</td>
</tr>
<tr>
<td>Given to D positive patient</td>
<td>23</td>
</tr>
<tr>
<td>Given to patient with immune anti-D</td>
<td>7</td>
</tr>
<tr>
<td>Given to patient with weak D</td>
<td>6</td>
</tr>
<tr>
<td>Given to mother with D neg infant</td>
<td>7</td>
</tr>
<tr>
<td>Given to wrong patient</td>
<td>6</td>
</tr>
<tr>
<td>Expired</td>
<td>9</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
</tr>
<tr>
<td>Total cases</td>
<td>87</td>
</tr>
</tbody>
</table>

2 cases of severe HDN - 1 fatal + 1 exchange tx
Types of IBCT events

<table>
<thead>
<tr>
<th>Type of event</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Wrong blood’ events where a patient received a blood component intended for a different patient or of an incorrect group</td>
<td>54 (14%)</td>
</tr>
<tr>
<td>Other pre-transfusion testing errors (excluding erroneous Hb)</td>
<td>28 (7%)</td>
</tr>
<tr>
<td>Blood of the incorrect group given to recipients of ABO or D mismatched PBSC, bone marrow or solid organ transplant</td>
<td>8 (2%)</td>
</tr>
<tr>
<td>Transfusion of blood of inappropriate specification or that did not meet the patient’s special requirements</td>
<td>108 (27%)</td>
</tr>
<tr>
<td>Inappropriate or unnecessary transfusions</td>
<td>51 (13%)</td>
</tr>
<tr>
<td>‘Unsafe’ transfusion where there were handling or storage errors</td>
<td>74 (19%)</td>
</tr>
<tr>
<td>Events relating to administration of anti-D immunoglobulin</td>
<td>77 (19%)</td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
</tr>
</tbody>
</table>
Table 18
Cases involving anti-D Ig administration with the site(s) of contributing errors
77 cases, 79 errors

<table>
<thead>
<tr>
<th>Type of event</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omission or late administration of anti-D Ig</td>
<td>26</td>
</tr>
<tr>
<td>- Laboratory errors</td>
<td>7</td>
</tr>
<tr>
<td>- Midwife/nurse errors</td>
<td>19</td>
</tr>
<tr>
<td>Anti-D Ig given to D pos patient</td>
<td>19</td>
</tr>
<tr>
<td>- Laboratory errors (including 8 weak D groups)</td>
<td>12</td>
</tr>
<tr>
<td>- Midwife/nurse errors</td>
<td>7</td>
</tr>
<tr>
<td>Anti-D Ig given to patient with immune anti-D</td>
<td>13</td>
</tr>
<tr>
<td>- Laboratory errors</td>
<td>6</td>
</tr>
<tr>
<td>- Midwife errors</td>
<td>8</td>
</tr>
<tr>
<td>Anti-D Ig given to mother of D neg infant</td>
<td>9</td>
</tr>
<tr>
<td>- Midwife error (anti-D given before cord group done)</td>
<td>1</td>
</tr>
<tr>
<td>- Laboratory error (4 wrong D group determinations, 2 wrong result manually entered onto computer, 2 infants grouped as D neg but anti-D issued in error)</td>
<td>8</td>
</tr>
<tr>
<td>Anti-D given to wrong patient (all were midwife/nurse errors)</td>
<td>4</td>
</tr>
<tr>
<td>Wrong dose given (1 lab error, 1 doctor error)</td>
<td>2</td>
</tr>
<tr>
<td>Anti-D Ig expired or out of temperature control</td>
<td>2</td>
</tr>
<tr>
<td>- Laboratory error</td>
<td>1</td>
</tr>
<tr>
<td>- Also midwife error</td>
<td>1</td>
</tr>
<tr>
<td>- Clinical error in community</td>
<td>1</td>
</tr>
<tr>
<td>Other (laboratory errors)</td>
<td>2</td>
</tr>
<tr>
<td>Total cases</td>
<td>77</td>
</tr>
<tr>
<td>Total errors</td>
<td>79</td>
</tr>
</tbody>
</table>
Anti D immunoglobulin errors

- Omission or late administration of PR-D
- PR-D given to D Positive women
- PR-D given to patients with immune D
- Laboratory errors- 47%
GUIDELINE FOR BLOOD GROUPING AND ANTIBODY TESTING IN PREGNANCY

Writing group: Gooch A1, Parker J2, Wray J3, Qureshi H4
1 National Blood Service, Manchester, 2 Department of haematology, Derby City Hospital, Derby, 3 University of Salford, Salford, Greater Manchester, 4 Department of Haematology, University Hospitals of Leicester, Leicester, UK

08/06/2006

Guidelines for the use of prophylactic anti-D immunoglobulin

British Committee for Standards in Haematology

Writing group: Parker J1, Wray J2, Gooch A3, Robson S4, Qureshi H5
1 Department of haematology, Derby City Hospital, Derby, 2 University of Salford, Salford, Greater Manchester, 3 National Blood Service, Manchester, 4 School of Surgical and Reproductive Sciences, University of Newcastle upon Tyne, 5 Department of Haematology, University Hospitals of Leicester, Leicester, UK
Guidelines available

2009

Guidelines for the Estimation of Fetomaternal Haemorrhage

Writing group:
E Austin1, S Bates2, M de Silva3, D Howarth4, A Lubenko5, M Rowley6, M Scott7, E Thomas8, J White9, M Williams6
Estimation of FMH
UK FMH guidelines 2009

- Sample requirements
- Serology
- Techniques
- Calculation
- Follow-up and confirmation of result
- Quality assurance
Methods

Acid Elution - Kleihauer
- Good for screening and initial assessment
- Very subjective
- Needs attention to detail

Flow cytometry
- Expensive
- Used as reference method
- Appears more accurate
- Method to confirm volume of FMH
- Not available to everyone quickly
Reporting Results

- **Reason for the sample**
 - Sensitising event, post delivery, other reason

- **Result of FMH in mL fetal cells**
 - Avoid ‘positive’ and ‘negative’

- **Advice about anti-D immunoglobulin required**
 - (standard dose, additional dose)

- **Advice regarding follow-up samples to check for clearance**

- **Communication and reporting of results very important**
False Positives

- Care required with AE
- Hb F increases in pregnancy but not normally a problem
- Can be raised in some genetic disorders
- Do Flow estimation if in doubt
Sample requirements

- Timing of samples taken
- Dangers of mislabelling
- Cord and Maternal group to be done
- If same group- MCV
- Alkali denaturation test (APT)
Audit

- To see if all D negative women have had a FMH test at the appropriate time and that, if fetal cells are detected, appropriate action is taken.

- Compare the results of confirmatory tests with the initial quantification.

- Audit the follow-up procedures in the small number of women requiring additional anti-D.
Problems

- When is immune Anti D prophylactic Anti D
- Does PRD affect the Kleihauer results
- How do we assess a DCT + if PRD given
- High Hb F what do we do for screening
 Right sample in bottle look at CG data
- Effective communication
- Electronic issue in PRD patients
Future

Postpartum anti-D: can we safely reduce the dose?

Bradley M Augustson, Elizabeth A Fong, Dianne E Grey, Janine I Davies and Wendy N Erber

- Australian paper (Bradley et al MJA 2006; 184 (12): 611-613)
- Retrospective study >5000 D- women FMH results by flow
- Proposing reduction of post natal dose to 250iu anti-D

Conclusions: This large retrospective audit shows that a currently available dose of 250 IU (50 mg) of anti-D would have been sufficient for 98.5% of the 5148 Rh D-negative women. On the basis of this evidence, a reduction in the recommended routine postpartum dose of anti-D from 625 IU to 250 IU when flow cytometric quantitation for FMH is available should be considered. Adopting such a strategy would ensure the ongoing provision of a valuable human blood product currently in limited supply.

MJA 2006; 184: 611–613
Future

- Fetal genotyping for all pregnancies where mother is D negative

- 40% D negative mothers will not need RAADP
Future ?not need anti-D!

- Potential therapy using Rh peptides administered as nasal spray
- Mucosal tolerance
 - Activation of immune regulation
 - Prevent or switch off immune response
- Could be used as prophylaxis and to treat women already sensitised
- Progressing to clinical trials

Research at University of Aberdeen - Scotland
Laboratory

- Right sample
- Correct fetal cell count
- Appropriate dose of Anti D
- Given in appropriate timescale
- Give appropriate advice