Tranexamic acid and Iron in Haematology

Andy King-Venables
Transfusion Practitioner
Hinchingbrooke Hospital

Why consider an alternative? Can't we just give blood?

Blood transfusion not without its risks- SHOT report 2015 shows deaths as a result of transfusion

Entirely reliant on donorsdonor pool ageing

Risk of TTI

related acute lung injury; TACO: transfusion-associated circulatory overload

What is Tranexamic acid

- Anti Fibrinolytic
- Developed in 1960's in Japan, used for menorrhagia
- More recently used for major Haemorrhage
- Cheap! (60-80p for a 500mg vial for IV)
- Effective (see NICE NG24)
- Available as oral tablets, IV and mouthwash and is available OTC for menorrhagia
- On the WHO list of essential medicines (minimum medicine needs for a basic health care system)

How does it work?

 Anti Fibrinolyticprevents clot breakdown by inhibiting the activation of plasminogen to plasmin, preventing plasmin degrading fibrin.

Indications for Tranexamic acid

- Well used in major haemorrhage
- all expected bleeds >500mls in surgery (Nice NG24)
- Management of haemorrhage due to the administration of a fibrinolytic agent.
- Prevention and treatment of haemorrhages due to general or local fibrinolysis

Contraindications and cautions

Contraindications

- Acute venous or arterial thrombosis
- Fibrinolytic conditions following consumption coagulopathy except in those with predominant activation of the fibrinolytic system with acute severe bleeding
- Severe renal impairment (risk of accumulation)
- History of convulsions
- Intrathecal and intraventricular injection, intracerebral application (risk of cerebral

Cautions

- Irregular menstral bleeding (investigate cause first)
- Massive Haematuria (risk of obstruction)
- Patient on oral contraceptive (increased risk of Thrombosis

- 76 year old man with Myelofibrosis
- Needs regular transfusions
- Hb could drop to 45-55 g/l, Plts ran 1-6
- Developed oozy GI Bleed
- Commenced on Tranexamic acid PO 1g TDS
- Difficult to judge effect as Myelofibrosis progressing

Case study 2

- 73 year old lady
- Myeloma
- Plts 12 Hb 54
- Sores and localised bleeding to mouth
- Commenced on Tranexamic acid mouthwash to good effect (reported by Patient)

- 63 year old lady
- ITP
 - Difficult to control
 - Poor Response to steroids
 - And steroids not well tolerated by Patient
- Hb 143 Plts 29
 - As ITP would not respond to Plt Transfusion
- Tranexamic acid started whilst waiting to start rituximab

Conclusion

- Cheap
- Quick
- Effective
- But be aware of contraindications (few absolute)
- Be aware of bleeding- may need additional treatments (Blood, Platelets, Iron etc)

What is Iron?

- Element -atomic number 26
- Fundamental in structure of Haemoglobin
- Haemoglobin accounts for 65% of iron in body (between 2g and 4g total)

Main Causes of iron deficiency

Inadequate Dietary Intake

Poor nutrition
Chronic alcoholism
Decreased consumption of animal protein and ascorbic acid

Iron Loss

Menstruation
Gastrointestinal bleeding
Haemodialysis
Puerperium
Surgery
Blood donation

Increased Iron Demands

Pregnancy
Infancy/adolescence

Inadequate Gastrointestinal Iron Absorption

Malabsorption syndromes
Systemic inflammation
Interference with certain
foods/drugs

Whats the fuss?- small numbers?

- The most common and widespread nutritional disorder in the world
- Most Common cause of Anaemia
- 2 billion people over 30% of the world's population are anaemic, many due to iron deficiency
- Iron deficiency affects more people than any other condition
- Modern "epidemic"
- Iron deficiency exacts its heaviest overall toll in terms of ill-health, premature death and lost earnings.

What does that mean in Haematology?

- Often multifactoral –patients with multiple conditions
- Linked with cause- Bleeding means increased risk of iron deficiency

Iron Turnover in the body

Progression of Iron deficiency

Iron deficiency anaemia is the result of a process that starts with iron store depletion¹

*Storage iron, transport iron and functional iron TSAT = Transferrin saturation, Hb = Haemaglobin Adapted from Tussing-Humphreys, 2012 and Ponikowski, 2015

In patients with CHF, repletion of iron stores with oral iron could take more than 6 months³

Treatment 1- increase Nutritional intake

- Simple
- Also need to increase vitamin C intake
- Not to drink Tea or coffee with meals (inhibits absorption)

But

- can take months to resolve anaemia
- Limited by patients diet
- Usually too late for the haematology Patient

Treatment 2 Oral Supplementation

- Tablets or Liquid
- But still absorbed via GI Tract
- Cheap
- Relatively safe

BUT

- Side effects common
- Patients often stop taking if side effects are intolerable
- Takes weeks to months to take effect
- Side effects can include abdo pain, constipation, diarrhoea with a relatively high frequency
- OTC preparations are low doses
- Cannot be used in children
- Usually too progressed if they make it to Haematology referral- often tried by GP

Treatment 3 IV Iron

Ferinject used at Hinchingbrooke

- Dose is dependent on weight and Hb
- Given direct into blood- bypasses Gut
- Peak response 3-4 weeks post dose
- Short infusion time (30 mins)
- Relatively fast actingBut
- High reaction risk
- Relatively expensive
- Used when fast response needed or intolerant of Oral iron
- Not licensed for children

Treatment 4- Transfusion

THE LAST RESORT!

- Only for patients with symptoms that need immediate resolution
- Acts straight away

BUT

- Reaction Risk
- •Infection risk
- •Immunosuppresses
- Risk of ARF
- Stops people donating in the future
- Relatively expensive
- Contains a small amount of Iron (about 250mg per bag)- does not replenish Iron Stores effectively
- •Relatively long infusion time
- Potentially SHOT reportable (if not used as last resort)

- 90 year old man
- Myelodysplasia
- Managed with regular transfusions (for years), but ferritin always <100 (unusual!!)
- Added periodic Iron infusions, in conjunction with blood Transfusions (shorter infusion time)
- Appears to have slightly reduced blood requirements.

- 94 year old male
- Lives alone, independently
- Longstanding iron deficiency- investigated repeatedly- NAD
- Subsequent referral to Haematology
- Has had 22 units of red cells since 2008 for IDA- multiple admissions (had developed atypical antibodies)
- Patient initially reluctant, but after iron said "that was much quicker" and happy to swap to iron infusions.
- No Transfusions Feb. 2015- May 2017 (Subsequent Cancer found- bone marrow failure)

- 58 year old lady
- Longstanding Carcinoid Tumour being regularly resected- referred to Haematology for anaemia.
- Hb 134
- Ferritin 20, CRP 4, TF Sats 8%, TF 3.62
- Iron deficient- unclear Mechanism being reinvestigated
- Given IV iron infusion (intolerant of oral tablets)

IV Iron Service

- Often run by Transfusion Practitioner as an adjunct
- Different models- Telephone clinics, outpatient clinics
- Referred into service (GP, or within hospital (count as part of treatment))
- Have initial consult (phone/ in person)
- Booked into infusion suite (Haematology OPD/ Ambulatory Care/ Infusion suite)
- Generally bloods checked 3-6 weeks post IV iron
- Follow up (ie if needs referral and for monitoring of bloods)

Sounds Great! What are the problems?

- Perception issue- Iron deficiency perceived as diagnosis, but it's a symptom- must have follow-up!
- Iron deficiency often falls between camps- "not haematology", "not Gastro" or "not Gynae"
 - Makes where to administer difficult- Haematology OPD? Gastro Outpatient OPD?
 - Also makes setting up service difficult, where do the patients go? Who takes responsibility?
- What happens to Patients when investigations have been exhausted? Follow up can be patchy
- Demand v Supply balancing resources

What next?

Continue to increase Iron use across the hospital (blood use also dropping)

Optimise the pathways for Iron deficiency

- ? One stop Clinics
- Better tie in with PBM

Specific follow up clinic

Uses of Iron still being researched- research into exercise tolerance and iron deficiency, and Heart failure ongoing

Conclusion

- Iron supplementation +- Tranexamic acid can be very effective
- Iron Appropriate alternative to transfusion
- Consideration to route needs to be given
- Increased role for Iron in NICE, and BCSH guidance, in optimisation of patients prior to surgery

BUT we are treating *symptoms*, a cause for iron deficiency should be identified.

Sources/ Further reading

- Vifor Pharma
- WHO
- Electronic Medicines Compendium
- Nice NG24
- BNF