A clinical and transfusion conundrum

Brigit Greystoke and Michelle Evans

Background

- 25 year old, severe sickle cell disease
- Started hydroxycarbamide 2016, considerable improvement including increased weight (previous BMI 16.5)
- Presented 09/08/2017 at 5 weeks pregnant
- Multiple red cell antibodies from previous transfusions, none clinically significant at time of presentation with pregnancy

Background

- Hydroxycarbamide (and iron chelation) stopped
- Counselled and wanted to continue with pregnancy
- Painful crisis 3 weeks after stopping hydroxycarbamide (8/40)
- Further painful crisis treated on delivery suite at 21+4/40, treated with analgesia and fluids

Background

- Readmitted at 22+6/40
- Pain; blurred vision; Hb52
- Subsequently found to have pyelonephritis
- Transferred to ITU for exchange transfusion
- Hb rose appropriately but by D5 of ITU admission had drifted back to baseline.

Differential diagnosis

- Sickle cell crisis causing haemolysis
- Bleeding in a pregnant patient
- Hyperhaemolysis
- Haemolytic transfusion reaction

Treatment

- Further transfusion, no Hb increment
- Long clinical discussions what's going on?
- Given IVIg
- We asked for help

Laboratory aspects

- Previous Serology:-
- Well known patient
- Multiple atypical antibodies :-Anti-M, Anti-S, Anti-Jka , Anti-Lea, Anti-Leb and Anti-A1.
- Which ones are not clinically significant in pregnancy?

Laboratory aspects

- 28 weeks bloods Antibody screen was negative
- Molecular genotype known.
- Antigen negative blood ordered for crossmatch including Hbs neg, CMV neg blood pre-ordered.
- Normally crossmatch compatible at IAT 37 °C

Current Serology

- During current crisis
- IAT Antibody Screen Positive, DAT negative, then positive

	91.00		0	1		1	łh-I	Ħ			P	1	M.	KE	u			OL	IFFY	1	(100)	Sil.	U	wis	1	M	NS	D	P	LVII	1040	Special AntigenTyping		
Celle	Rh-hr	Donor Number	D	Ç	5		¢	e	1	C*	۷	ĸ	k	Кра	Kpb	jşā	Jsb	Fy	Fy	Jk	Jkb	Xgª	Le	Lot	s	5	M	N	P	w	Lub		Cet#	IAT
0	AtwRt	320703	+	+	0)	0	٠	0	•	0	0	+	0	+	1	+	0	+	+	+	0	+	0	+	0	+	+	0	0	+		Ű.	0.5
2	R2R2	309445	÷	0	1	ł	•	0	0	0	0	•	+	0	+	0	+	+	0	+	0	0	+	0	0	+	+	+	+	0	•		2	0.5
1	m	320521	0	0	()	•	•	•	0	0	0		•	•	i	+	0	+	0	+	+	0	+	0	+	+	0	+	0	+		a,	0

Antibody ID

						RI	h-ftr						KE	ILL.			DU	IFFY	к	DD	Sex	LE	wis		N	INS		P	LUT	HERAN	Special Antigen Typing	Te	st Results
ell#	Rh-hr	Donor Number	D	С	E	с	e	1	C*	v	к	k	Кра	Крb	Jsa	Jsb	Fya	Fya Fyb	Jka	Jkb	Xga	Le	a Leb	S	s	M	N	P ₁	Lu	a Lut		Cell 1A T	E
1	R1wR1	101267	+	+	0	0	+	0	+	1	0	+	0	+	1	+	+	+	+	0	0	+	0	+	+	+	0	+	0	+		105	2
2	R1R1	101268	+	+	0	0	+	0	0	1	0	+	+	+	1	+	+	+	+	+	+	0	+	+	+	+	0	+	0	+		2	2
3	R2R2	101269	+	0	+	+	0	0	0	1	0	+	0	+	1	+	0	+	+	0	+	0	o	+	+	+	+	+	0	+		30	0
4	Ror	101057	+	0	0	+	+	+	0	1	0	+	0	+	1	+	+	0	0	+	+	0	+	0	+	+	+	0	0	+		4 0-5	2
5	ŕr	100593	0	+	0	+	+	+	0	1	0	+	0	+	1	+	+	0	0	+	+	0	+	0	+	+	+	0	0	+	@	5 05	1
6	r''r	101271	0	0	+	+	+	+	0	1	0	+	0	+	1	+	0	+	+	0	0	0	+	+	0	+	0	+	0	+	@	6 0-5	2
7	π	101272	0	0	0	+	+	+	0	1	+	+	0	+	1	+	+	0	+	0	0	0	+	+	+	+	0	+	+	+	@	7 05	2
8	n	101030	0	0	0	+	+	+	0	1	0	+	0	+	1	+	+	0	+	+	+	+	0	0	+	0	+	+	0	+	@	8 [2
9	п	101273	0	0	0	+	+	+	0	1	0	+	0	+	1	+	+	0	0	+	+	0	0	+	0	+	0	+	0	+		9 O	0
10	π	101274	0	0	0	+	+	+	0	1	+	+	0	+	1	+	0	+	+	+	+	0	+	0	+	+	0	0	0	+		10 05	2
11	R1R1	101275	+	+	0	0	+	0	0	1	+	+	0	+	1	+	0	+	+	+	+	0	+	+	+	0	+	+	0	+	HLA+	11 0.5	a
	Patient Cells																															A O	

- Most likely Anti-Lea and Anti-Leb (Lewis System)
- Referred NHSBT to rule out underlying antibodies:- Confirmed Lewis Antibodies , Anti-Lea and Anti-Leb.
- Lewis:-Not clinically significant in Pregnancy and rarely implicated in Haemolytic transfusion reaction (HTR)

Positive IAT Crossmatch!

- 0.5 and 1+ reactions seen in IAT crossmatch.
- NHSBT only detecting anti-Lea at 37°C(by their technique)
- ? sensitive Lab automated method most likely due to Lea or Leb positive antigens on donor units.
- NHSBT crossmatch compatible

Differential diagnosis

- Sickle cell crisis causing haemolysis would expect HbS to fall relative to HbA
- Bleeding in a pregnant patient always possible
- Hyperhaemolysis would expect HbS to fall
- Haemolytic transfusion reaction but no significant antibodies???

Haematologist : Scientist discussion

- Clinicians not happy with clinical picture.....?Haemolysis but why???
- BMS not happy as positive reaction in crossmatch ?but why
- Could Lewis antibodies be reacting *in vivo*?
- Phenotyping of the positive crossmatch units were either Le^a + or Le^b + .
- Look at HbS and HbA levels post transfusion of such units

Image Courtesy of Stephanie Teasdale BMS NUTH

Image Courtesy of Stephanie Teasdale BMS NUTH

Differential diagnosis

- Sickle cell crisis causing haemolysis would expect HbS to fall relative to HbA – It didn't
- Bleeding in a pregnant patient always possible, but no evidence, and HbS should fall in step with HbA – it didn't
- Hyperhaemolysis would expect HbS to fall no
- Haemolytic transfusion reaction BINGO

Action

- Consultant Haematologist approved switch to group Le(a-b-) donations.
- Negative IAT and Crossmatch compatible
- Rare donor phenotype required to meet all antigen negative requirements.
- Sourcing blood suddenly became extremely difficult
 - Multiple NHSBT centres involvement
 - Delays due to logistics of getting blood
 - Reduced amount available due to scarcity.

Antenatal and Delivery Plan

- Weekly communications
 - NHSBT >Haematologist>clinical team >transfusion manager>TP>laboratory senior> Lab staff
- Sample timings, Blood for top up , blood for cover
- Specific Donors arranged to provide Le (a-b-) units consistently
- Negate Leb- Fya –, M -, CMV neg requirements if emergency.
- 4 units on standby at all times for remainder of pregnancy and up to 8 held at NHSBT for expected delivery induction.

HbA level, RBC transfusions and antibodies detected

N.B Haemoglobin shown is post transfusion result

Image Courtesy of Stephanie Teasdale BMS NUTH

Follow up

- Weekly top up transfusions (as unable to obtain blood for regular exchange)
- Several further painful crises, but more easily controlled
- Delivered a healthy boy by elective CS at 36+5 weeks
- Re-established on hydroxycarbamide

Thank you Any questions?